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Abstract 

Accurate and timely forecasting of forest fuel moisture is critical for decision making in the context of bushfire risk and 

prescribed burning. The moisture content in forest fuels is a driver of ignition probability and contributes to the success 

of fuel hazard reduction burns. Forecasting capacity is extremely limited because traditional modelling approaches have 

not kept pace with rapid technological developments of field sensors, weather forecasting and data-driven modelling 

approaches. This research aims to develop and test a 7-day-ahead forecasting system for forest fuel dryness that 

integrates an automated fuel sensor network, gridded weather, landscape attributes and machine learning models. The 

integrated system was established across a diverse range of 30 sites in south-eastern Australia. Fuel moisture was 

measured hourly using 10-hour automated fuel sticks. A subset of long-term sites (5 years of data) was used to evaluate 

the relative performance of a selection of machine learning (Light Gradient Boosting Machine (LightGBM) and 

Recurrent Neural Network (RNN) based Long-Short Term Memory (LSTM)), statistical (VARMAX) and process-based 

models. The best performing models were evaluated at all 30 sites where data availability was more limited, 

demonstrating the models' performance in a real-world scenario on operational sites prone to data limitations. The 

models were driven by daily 7-day continent-scale gridded weather forecasts, in-situ fuel moisture observation and site 

variables. The model performance was evaluated based on the capacity to successfully predict minimum daily fuel 

dryness within the burnable range for fuel reduction (11 – 16%) and bushfire risk (<11%). The sites with long-term data 

performed favourably using the LightGBM model. Producing average probability of detection (POD; probability of 

detecting an event in the specified range) prediction results 1-days out, 5-days out and the average across all seven days 

of 0.92, 0.81 and 0.80 (<11%), and 0.71, 0.54 and 0.53 (11 – 16%); with R2’s of 0.77, 0.59 and 0.55. The machine 

learning models performed favourably compared to the statistical and process-based models. This demonstrates that 

accurate, real-time operational fuel moisture forecasting can be achieved by integrating sensor data, weather forecasts, 

landscape information, and data-driven modelling approaches. The proposed system has the potential to be applied in 

any wildland fire setting where weather forecasts are available, and the adaptation of this system will greatly enhance 

the decision-making capabilities of fire managers.  

 

 

1. Introduction 

Bushfires as a natural disaster are the cause of hundreds of fatalities in Australia and across the globe (Blanchi 

et al., 2014; Haynes et al., 2010, 2019). An important component of bushfire risk is the dead fuel moisture 

content (DFMC). This is partially due to the ignition probability of fuels having a non-linear relationship, with 

a significant increase in ignition risk once the fuels reach a threshold moisture content (Ellis, 2015). In 
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productive forests, fuel moisture is also an important variable which controls the risk of bushfire ignition and 

spread, with the fuel loads being high enough to maintain a fire once started (Cawson et al., 2018). Fuel moisture 

also makes planned burning extremely difficult (Slijepcevic et al., 2015). Due to this being able to predict the 

DFMC into the future would allow for better risk identification and fuel management planning.  

Modelling of DFMC has been attempted using processes-based methods which input temperature, relative 

humidity, solar radiation, and precipitation. With the model proposed by Nelson (2000) being widely used. 

Recently this model has been surpassed by more mechanistic (Van Der Kamp, 2017) or data driven (Lee et al., 

2020; Shmuel et al., 2022) approaches which improve the representation and accuracy of FMC predictions. 

These methods utilise a larger number of input variables which aim to improve the modelling accuracy by more 

detailed representation of the physical processes, or through determining the relationships through statistical, 

data driven techniques (e.g. random forest, neural networks). These methods have not been explored in 

predictive modelling under varying forest canopies (key driver of FMC (Brown et al., 2021)), forecasting fuel 

moisture multiple days in advance using forecast data. A forecasting system would be another valuable tool to 

assist fire managers in early warning risk detection systems or allow fuel reduction burn operations to be moved 

to a day which will optimise the likelihood of achieving a successful burn. 

The overall aim of this study was to develop an automatic fuel moisture monitoring system, capable of 

forecasting 10-hour fuel moisture. This system is aimed at capturing the change in fuel moisture under varying 

forest types, located across a large spatial and climatic range. The system integrates advancements in the ability 

to forecast short-term climate conditions and utilise the ever-expanding, continuous dataset which the automatic 

fuelsticks provide. For this system to produce the highest accuracy predictions, two specific research questions 

arose, these being: 

1. If you have a high quality and quantity of data how do machine learning models compare with statistical 

(VARMAX) and process-based models, and which model is likely to be the most reliable in a real-

world scenario?  

2. How well does the best performing methods in question forecast across a larger network with smaller 

datasets and varying data quality? 

2. Methods 

2.1. Overview - Fuel moisture monitoring forecasting system 

The Forest Fuel Moisture Forecasting System (FFMFS) comprises four components that come together to allow 

fuel moisture to be forecast for up to seven days. The conceptual diagram shown in Figure 1 illustrates how 

these key components are integrated for a continuously retrained spatial/temporal forecast model (gridded 

weather forecast, gridded landscape attributes, live on ground sensor network, daily re-trained ML model). It 

integrates spatially forecast climate variables, with the significant advancements in continuous in-situ forest fuel 

moisture monitoring (Automated fuel moisture sticks), and in remote sensing datasets. These different streams 

of data and information were brought together in a machine learning algorithm which predicts the minimum, 

maximum and mean fuel moisture content across the landscape at a daily timescale, seven days in advance. The 

system was developed in consultation with the Department of Environments, Land, Water and Planning 

(DELWP, Victorian Government, Australia), this was to ensure that it could be replicated within the government 

organisation, with the potential to be used in risk and management planning. 
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Figure 1- The components of the forest fuel moisture monitoring system 

2.2. Study area 

The study area was located across Victoria, Australia (Figure 2). On the traditional lands of the First Nations 

peoples (Victorian Aboriginal Heritage Council Victoria’s Current Registered Aboriginal Parties (RAP), 2022). 

The study comprised of 30 field sites which captured a wide range of physical and environmental variables 

throughout the region. The long-term climatic conditions vary significantly across the sites, with aridity indexes 

from 1.13 to 5.90. The study area also covers a range of vegetation types and forest structures, from tall 

eucalyptus forests to sparse woodlands with shrubs and minimal vertical structural complexity. The sites aimed 

to capture both open and closed forest conditions. 

 

Figure 2- Study area spatial extent across Victoria, Australia. 
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2.3.  Site instrumentation and data collection 

The data collection period was from April 2014 to August 2021, with seven sites installed throughout 2014 and 

23 in 2019. The sites had fuel moisture content readings collected half hourly using fuel sticks (CS506, 

Campbell Scientific, Inc., Logan, USA). The fuel moisture sticks were installed 10 - 30cm above the ground to 

represent elevated ground fuels. Site variables used to represent the vegetation and climate signature includes 

elevation, slope, aspect, aridity index, long term annual rainfall and vegetation cover fraction. The weather 

forecast variables were from the Australian Digital Forecast Database (Australian Bureau of Meteorology, 

2022). This is a gridded seven day forecast across Victoria, producing daily to sub-daily predictions at ~3km 

resolution. The daily climate variables used in the model were: Temperature, precipitation, relative humidity, 

skyview factor, Keetch–Byram Drought Index (Keetch & Byram, 1968), wind direction (predominant) and wind 

speed (max). 

2.4. Modelling 

Time Series prediction models fall into three broad categories: Autoregressive, Statistical/machine learning, and 

process-based/mechanistic. In this study a comparison of these methods for DFMC forecasting is presented. 

Autoregressive (AR) models are often the simplest to implement with time series predictions. These models 

attempt to forecast from the existing dataset using recent values as independent variables. They use linear 

models with previous values, or residuals from the rolling average of previous values. In addition to recent 

variables, they may also account for seasonal and long-term trends estimated from time series decomposition, 

and other independent variables. This study uses an Autoregressive integrated moving average (ARIMA) 

variation VARMAX as the baseline autoregressive model to determine whether fuel dryness can be predicted 

using past time series data alone. 

The two machine learning methods used were, a boosted regression tree random forest (BRT-RF) model 

(Breiman, 1998; Elith et al., 2008) and a long short term memory recurrent neural network (LSTM-RNN) model. 

Boosted regression trees train an ensemble of models (i.e. Random Forest regression models), on subsets of data 

iteratively to create a decision tree algorithm to predict the response variable. We used the LightGBM python 

package (Ke et al., 2017) to build and train the random forest model. In addition to BRT’s, Neural Networks 

have also been used effectively for time series forecasting (Fan & He, 2021). We used a Long Short Term 

Memory Recurrent Neural Networks (LSTM-RNN) to compare ML approaches.  

The process–based (PB) model used as a comparison was the model proposed by Van Der Kamp (2017). The 

model only requires four inputs: temperature, relative humidity, precipitation and radiation. The fuelstick model 

proposed by Van Der Kamp is an improved version of the Nelson model (2000), representing the radiation 

loading on the fuelstick in more detail. The original Nelson model has been used operationally in the U.S. 

National Fire Danger Rating System (NFDRS 2016 version; US National Wildfire Coordinating Group, 2021), 

as well as in fire behaviour models such as FARSITE and FlamMap. 

2.4.1. Long-term climate trends 

Time Series Forecasting of environmental systems is a problem in that it typically needs to account for long 

term trends, seasonal cyclicity, antecedent conditions and lag response to controlling processes (Cheng et al., 

2015). Time series data often contain patterns of trend and seasonality that can be extracted to improve 

predictive capability. To do this, Time Series Decomposition (TSD) is used to split a time series dataset into 

long term trends, seasonal cycles, and residual error. We use the Facebook prophet python package (Taylor & 

Letham, 2018), which uses an additive method to decompose the time series. This was used to create a seasonal 

term for input into the BRT-RF and LSTM-RNN models. 

2.5. Model validation and performance metrics 

All models were evaluated on the seven original sites installed in 2014. To determine which method performed 

best with the most high-quality data available. The training dataset was from 2014 to September 2020. The 

validation dataset was from May 2020 – May 2021. The BRT-RF and PB models were then assessed across the 

entire range of sites, with the additional sites installed in 2019 having a lesser quality of data. These real-world 

operational sites, which are centrally managed do not always have the same data quality as research-based sites. 

Each daily forecast had R2, RMSE, NSE and MAE calculated, as well as the event-based metrics of the 

probability of detection (POD) and false alarm ratio (FAR). These event-based metrics predict how the model 
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performs predicting specific fuel moisture ranges (events), within levels relevant to planned burning (Slijepcevic 

et al., 2015). 

 

3. Results 

The RBT-RF results from the seven long-term sites are presented in Table 1. These results show an overall 

decrease in the accuracy across the seven days. There was high variability between the sites, with Dimboola, 

Bendigo and St. Arnaud performing well across all the metrics, while Alexandra and Daylesford performed 

poorly. The event-based metrics (Figure 3) showed the models performed best at low FMC (<11%), while as 

the higher two ranges performing worse. The “Patchy Burn” range had the highest FAR, making this range the 

most unreliable in predictions. 

Table 1 – BRT-RF model performance across the seven long term sites from 2014 – 2021. 

 R2 NSE MAE RMSE 

Site 1-D 3-D 5-D 7-D 1-D 3-D 5-D 7-D 1-D 3-D 5-D 7-D 1-D 3-D 5-D 7-D 

Dimboola 0.87 0.73 0.69 0.65 0.86 0.61 0.61 0.23 1.17 1.98 1.97 2.63 1.67 2.79 2.93 3.87 

Hattah 0.88 0.74 0.68 0.63 0.84 0.56 0.55 0.35 0.79 1.23 1.39 1.62 1.27 2.11 2.43 2.59 

Bendigo 0.87 0.68 0.74 0.65 0.85 0.45 0.69 0.28 1.32 2.39 1.99 2.69 1.87 3.56 2.77 4.04 

St. Arnaud 0.79 0.72 0.74 0.63 0.71 0.53 0.49 0.42 1.74 2.39 2.86 2.85 2.71 3.42 3.81 3.80 

Casterton 0.73 0.64 0.66 0.56 0.37 -0.82 -0.96 -1.43 3.13 6.20 5.99 7.27 4.70 798 8.00 9.37 

Daylesford 0.56 0.17 0.20 0.18 -0.03 -6.10 -7.95 -5.53 2.70 7.35 8.55 7.23 3.95 10.4 11.6 9.95 

Alexandra 0.69 0.50 0.47 0.55 0.60 -0.17 -0.17 0.11 1.76 2.69 3.09 2.68 2.45 4.18 4.20 3.64 

Overall 

mean 
0.77 0.59 0.59 0.55 0.60 -0.70 -0.67 -0.80 1.80 3.46 3.65 3.85 2.66 4.92 4.94 5.32 

 

Figure 3 – Event based performance of the BRT-RF model for the daily minimum DFMC forecasts within the range 

of 11 – 16%, for the seven long term sites. (Top) Probability of detection, (Bottom) false alarm ratios. Left, middle and 

right columns representing planned burn outcoms proposed in Slijepcevic et al (2015) based on FMC ranges.(left) 

Too dry and higher risk of burn escaping (0 – 11% FMC); (middle) Good burn representing the FMC range that will 

sustain a burn but less likely to escape (11 – 16% FMC); and, a Patchy burn due to the FMC being too high and the 

burn not self sustaining (16 – 21% FMC)  

 

4. Discussion 

The BRT-RF managed to incorporate information traditional processed-based modelling cannot, determining 

how this information relates to the DFMC. The decay in the accuracy, decreasing POD and increasing FAR 
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across the seven days highlights the increased uncertainty associated with the weather forecast. However, the 

use of event-based performance metrics showed that although the model decreased in accuracy, it remained 

within the ranges to predict critical DFMC relevant to planned burning (Slijepcevic et al., 2015). This is critical 

as while traditional statistics highlight the accuracy in models, they don’t reflect the important range for land 

and fire managers. The results demonstrated that a fuel moisture monitoring forecast system could effectively 

predict 10-h DFMC up to seven days in advance. Linking ground-based fuel moisture monitoring stations 

spatially across forested terrain with gridded forecasts allows the complex sub-canopy climate variability to be 

accounted for in predictions. Grounding the starting DFMC in observations also proved important due to the 

decay rate across the seven days. If the starting DFMC was incorrect, then adding this uncertainty to the decay 

rate would decrease the reliability of the forecasts. Lastly, incorporating site variables assisted in the model’s 

ability to account for the transfer of climate relationships from above the canopy to below. The ability to 

incorporate canopy and landscape variables also has the potential to expand the point-based forecasts into a 

spatial forecast. 

The proposed system differs from previous DFMC forecasting as it incorporates live continuous below canopy 

measurements with above canopy weather, machine learning techniques and a seasonal rolling term. The 

assembled dataset represents the largest below canopy comparison of continuous DFMC forecasting using 

machine learning to our knowledge, across the largest range of forest types. The performance of the model 

validates the use of ML for predicting DFMC below canopy in closed forests, this being highlighted as an area 

of limited research by Shmuel et al. (2022). Early results from the other traditional models indicate that the 

machine learning model performed favourably in comparison, highlighting the value of ML techniques for 

below canopy moisture forecasting. 

 

5. Conclusion 

The proposed Forest Fuel Moisture Forecasting System has demonstrated the ability to incorporate 

advancements in ML techniques, weather forecasting, ground-based sensors, and remote sensing into a 

theoretically operational system for land managers. The ability to predict forest fuel moisture multiple days in 

advance with known levels of uncertainty within relevant DFMC ranges will allow for more informed decisions 

and planning around fuel reduction burns and bushfire risk. While more work needs to be done on validating 

the effectiveness of using DFMC forecasting for decision making in bushfire risk and planned burning, the 

proposed system provides a tool and framework with which this research can be conducted. 

 

6. References 

Australian Bureau of Meteorology. (2022). The Australian Digital Forecast Database. Retrieved March 26, 

2022, Available online: http://www.bom.gov.au/weather-services/about/forecasts/australian-digital-

forecast-database.shtml 

Blanchi, R., Leonard, J., Haynes, K., Opie, K., James, M., & Oliveira, F. D. de. (2014). Environmental 

circumstances surrounding bushfire fatalities in Australia 1901–2011. Environmental Science & Policy, 37, 

192–203. https://doi.org/https://doi.org/10.1016/j.envsci.2013.09.013 

Breiman, L. (1998). Arcing classifier (with discussion and a rejoinder by the author). The Annals of Statistics, 

26(3), 801–849. https://doi.org/10.1214/aos/1024691079 

Brown, T. P., Inbar, A., Duff, T. J., Burton, J., Noske, P. J., Lane, P. N. J., & Sheridan, G. J. (2021). Forest 

Structure Drives Fuel Moisture Response across Alternative Forest States. Fire, Vol. 4. 

https://doi.org/10.3390/fire4030048 

Cawson, J. G., Duff, T. J., Swan, M. H., & Penman, T. D. (2018). Wildfire in wet sclerophyll forests: the 

interplay between disturbances and fuel dynamics. Ecosphere, 9(5), e02211. 

https://doi.org/https://doi.org/10.1002/ecs2.2211 

Cheng, C., Sa-Ngasoongsong, A., Beyca, O., Le, T., Yang, H., Kong, Z. (James), & Bukkapatnam, S. T. S. 

(2015). Time series forecasting for nonlinear and non-stationary processes: a review and comparative study. 

IIE Transactions, 47(10), 1053–1071. https://doi.org/10.1080/0740817X.2014.999180 

Elith, J., Leathwick, J. R., & Hastie, T. (2008). A working guide to boosted regression trees. Journal of Animal 

Ecology, 77(4), 802–813. https://doi.org/https://doi.org/10.1111/j.1365-2656.2008.01390.x 

https://doi.org/10.14195/978-989-26-2298-9_1
http://www.bom.gov.au/weather-services/about/forecasts/australian-digital-forecast-database.shtml
http://www.bom.gov.au/weather-services/about/forecasts/australian-digital-forecast-database.shtml


Advances in Forest Fire Research 2022 - D. X. Viegas & L.M. Ribeiro (Ed.) 

Chapter 1 - Decision Support Systems and Tools 

https://doi.org/10.14195/978-989-26-2298-9_1  Advances in Forest Fire Research 2022 – Page 27 
 

Ellis, P. F. M. (2015). The likelihood of ignition of dry-eucalypt forest litter by firebrands. International Journal 

of Wildland Fire, 24(2), 225–235. Retrieved from https://doi.org/10.1071/WF14048 

Fan, C., & He, B. (2021). A Physics-Guided Deep Learning Model for 10-h Dead Fuel Moisture Content 

Estimation. Forests, Vol. 12. https://doi.org/10.3390/f12070933 

Haynes, K., Handmer, J., McAneney, J., Tibbits, A., & Coates, L. (2010). Australian bushfire fatalities 1900–

2008: exploring trends in relation to the ‘Prepare, stay and defend or leave early’ policy. Environmental 

Science & Policy, 13(3), 185–194. https://doi.org/https://doi.org/10.1016/j.envsci.2010.03.002 

Haynes, K., Short, K., Xanthopoulos, G., Viegas, D., Ribeiro, L. M., & Blanchi, R. (2019). Wildfires and WUI 

Fire Fatalities BT - Encyclopedia of Wildfires and Wildland-Urban Interface (WUI) Fires (S. L. Manzello, 

Ed.). https://doi.org/10.1007/978-3-319-51727-8_92-1 

Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q., & Liu, T.-Y. (2017). LightGBM: A Highly 

Efficient Gradient Boosting Decision Tree. In I. Guyon, U. V Luxburg, S. Bengio, H. Wallach, R. Fergus, 

S. Vishwanathan, & R. Garnett (Eds.), Advances in Neural Information Processing Systems (Vol. 30). 

Retrieved from https://proceedings.neurips.cc/paper/2017/file/6449f44a102fde848669bdd9eb6b76fa-

Paper.pdf 

Keetch, J. J., & Byram, G. M. (1968). A drought index for forest fire control (Vol. 38). US Department of 

Agriculture, Forest Service, Southeastern Forest Experiment …. 

Lee, H., Won, M., Yoon, S., & Jang, K. (2020). Estimation of 10-Hour Fuel Moisture Content Using 

Meteorological Data: A Model Inter-Comparison Study. Forests, Vol. 11. https://doi.org/10.3390/f11090982 

Shmuel, A., Ziv, Y., & Heifetz, E. (2022). Machine-Learning-based evaluation of the time-lagged effect of 

meteorological factors on 10-hour dead fuel moisture content. Forest Ecology and Management, 505, 

119897. https://doi.org/https://doi.org/10.1016/j.foreco.2021.119897 

Slijepcevic, A., Anderson, W. R., Matthews, S., & Anderson, D. H. (2015). Evaluating models to predict daily 

fine fuel moisture content in eucalypt forest. Forest Ecology and Management, 335, 261–269. 

https://doi.org/https://doi.org/10.1016/j.foreco.2014.09.040 

Taylor, S. J., & Letham, B. (2018). Forecasting at Scale. The American Statistician, 72(1), 37–45. 

https://doi.org/10.1080/00031305.2017.1380080 

US National Wildfire Coordinating Group. (2021). Dead Fuel Moisture Content. Retrieved March 25, 2021, 

Available online: https://www.nwcg.gov/publications/pms437/fuel-moisture/dead-fuel-moisture-content  

van der Kamp, D. W., Moore, R. D., & McKendry, I. G. (2017). A model for simulating the moisture content 

of standardized fuel sticks of various sizes. Agricultural and Forest Meteorology, 236, 123–134. 

https://doi.org/10.1016/j.agrformet.2017.01.013 

Victorian Aboriginal Heritage Council Victoria’s Current Registered Aboriginal Parties (RAP). Retrieved 

March 26, 2022, Available online: https://www.aboriginalheritagecouncil.vic.gov.au/victorias-current-

registered-aboriginal-parties  

 

 

https://doi.org/10.14195/978-989-26-2298-9_1
https://www.nwcg.gov/publications/pms437/fuel-moisture/dead-fuel-moisture-content
https://doi.org/10.1016/j.agrformet.2017.01.013
https://www.aboriginalheritagecouncil.vic.gov.au/victorias-current-registered-aboriginal-parties
https://www.aboriginalheritagecouncil.vic.gov.au/victorias-current-registered-aboriginal-parties

	A forest fuel dryness forecasting system that integrates an automated fuel sensor network, gridded weather, landscape attributes and machine learning models



