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Abstract 

Forest fuel inventory, monitoring and mapping provide the basis for fuel management activities, including assessing 

wildfire hazards and risk, prescribed fire planning, designing silvicultural treatments, and predicting fire behaviour and 

effects at various scales. One of the most significant challenges in developing accurate surface fuel maps is capturing 

the spatial variability of fuel load within and between different fuel components. In this paper, we compare the 

performance of four spatial interpolation methods for estimating and mapping fine-scale fuel load in a dry mixed conifer 

forest in Colorado, USA. The four approaches are: classification, multiple linear regression, ordinary kriging, and 

regression kriging. We chose these methods because they are commonly used in ecological studies and cover a range of 

SIM including, non-geostatistical, geostatistical, and hybrid approaches. All SIM methods yielded unbiased fuel load 

estimates, with mean error within 3% of the observations with MAPE from 100% to 40%, depending on the specific 

fuel com-ponent and spatial interpolation method. Our results indicate that regression kriging was able to better capture 

the fine-scale spatial variability in fuel load compared to other spatial interpolation methods.  

 

 

1. Introduction 

Forest fuel inventory and monitoring provide the basis for fuel management activities, including assessing 

wildfire hazards and risk, prescribed fire planning, designing silvicultural treatments, and predicting fire 

behaviour and effects at various scales. The most commonly assessed attribute of the fuels complex is the load. 

Fuel load is a required input to nearly all fire behaviour and effects models and is a critical component of 

terrestrial carbon inventories and wildlife habitat assessment (Keane et al. 2013). Fuel inventory approaches 

have traditionally assumed that the spatial variability in fuel load is of little consequence for management 

decisions and thus focus on providing estimates of spatially averaged values for a given area. Yet, recent studies 

highlight that fine-scale variability in the fuels complex exerts considerable influence on many ecologically 

relevant fire behaviour and effects metrics (O’Brien et al. 2016). Directly mapping fine-scale fuel variability is 

costly and time-consuming, especially across large. To overcome these limitations, it is often necessary to utilize 

a spatial interpolation method (SIMs) to estimate the fuel load at unsampled locations and generate spatially 

continuous fuel load maps for wildfire hazard and risk assessments, prescribed fire planning, and silvicultural 

treatment design. 

One of the most significant challenges in developing accurate surface fuel maps is capturing the spatial 

variability of fuel load within and between different fuel components. This variability arises due to interactions 

between the physical environment (e.g., climate, soils, and topography) and ecological processes (e.g., 

productivity, deposition, decomposition, and disturbances) that determine the balance between inputs and 

outputs of fuel across multiple spatial and temporal scales. One of the most commonly used approaches to 

capture this variability is to classify an area into unique groups using auxiliary, often remotely sensed data (e.g., 

vegetation type, topographic data, or land use classes) and then assign a fuel load to all areas of a given class 

based on the sampled data (e.g., Keane et al. 2013). A drawback of a classification approach is that the variability 

in the data is reduced to a few unique values. Other researchers have utilized regression-based approaches where 

the relationship between continuous auxiliary variables and the surface fuel load is used to predict values at 
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unmeasured locations. Previous studies have weak to nonexistent correlations between the surface fuel load and 

topographic and forest structural metrics (e.g., Lydersen et al. 2015; Hall et al. 2006) indicating that surface fuel 

maps developed based on these relationships may have limited accuracy. Recent studies have found that surface 

fuels exhibit strong fine-scale spatial autocorrelation, which, if taken into account, may increase fuel map 

accuracy (Keane et al. 2013; Vakili et al. 2016). Although previous research has acknowledged spatial 

autocorrelation in fuel load, only Pierce et al. (2009) have explicitly assessed the degree to which this improves 

spatial interpolation. Their results indicate that including spatial autocorrelation did not significantly improve 

fine-scale predictive accuracy compared to linear regression approaches. However, the scale of analysis used in 

this study was greater than the inherent spatial scale of surface fuel variability identified by Keane et al. (2013) 

and Vakili et al. (2016), which may have limited any potential improvements in predictive accuracy. 

In this paper, we compare the performance of four SIMs for estimating and mapping fine-scale fuel load in a 

dry mixed conifer forest in Colorado, USA. The four approaches were: classification, multiple linear regression, 

ordinary kriging, and regression kriging. We chose these methods because they are commonly used in ecological 

studies and cover a range of SIM including, non-geostatistical, geostatistical, and hybrid approaches. 

 

2. Methods 

2.1. Study Area and Data Collection 

We conducted this study on the 17.6-ha Pike Peak Forest Dynamics Plot (PFDP) located within the Pike and 

San Isabel National Forest of Colorado. PFDP was established in the summer of 2016 as a collaboration between 

Colorado State University and the USDA Forest Service for long-term forest dynamics monitoring. The PFDP 

is representative of mixed conifer forests in the southern Rocky Mountains with an elevation range from 2,781 

to 2,833 m and a dry, continental climate with 660.7 mm of rain per year and a mean daily temperature ranging 

from -4.7° C in January to 14.0° C in August. Topographically, the PFDP is shaped by two significant ridges, 

one oriented west-east in the northern portion of the plot and another oriented northwest-southeast in the 

southwestern portion, and several smaller secondary ridges protruding from the two main ones. The dominant 

overstory vegetation for the study site includes ponderosa pine (Pinus ponderosa Lawson & C. Lawson) and 

quaking aspen (Populus tremuloides Michx.) on southern aspects, and mixtures of Engelmann spruce (Picea 

engelmannii Parry ex Engelm.), blue spruce (Picea pungens Engelm.), and Douglas-fir (Pseudotsuga menziesii 

(Mirb.) Franco) on northern aspects. The average density, basal area, and quadratic mean diameter at breast 

height for the site are 804 trees ha-1, 7.55 m2 ha-1, and 19.0 cm, respectively.  

All trees in PFDP at least 1.37 m tall were mapped to the nearest 0.1 m and had their species, diameter at breast 

height, height, and crown base height recorded. To characterize the surface fuel load across the site, we double 

sampling procedure to estimate the fuel load of the 1-, 10-, and 100-hr dead down and woody fuels on 437 1-

m2 irregularly located plots (Keane and Dickinson 2007, Tinkham et al. 2016). We estimated litter and duff 

fuel load using the depth-to-load method using locally derived bulk density estimates. Total fuel load was 

estimated by summing the individual component fuel loads (1- 10-, 100-hr dead, down and woody fuel, and 

litter and duff). 

We used our stem-mapped overstory data along with remote sensing imagery to calculate two overstory 

(dominate species and basal area) and two topographic (percent slope and Beer’s aspect) characteristics that we 

used as auxiliary information in spatial interpolation. Topographic auxiliary variables were calculated using a 

10-m digital elevation model (DEM; available at nationalmap.gov; accessed 20 June 2022).  

2.2. Spatial Interpolation Methods and Analysis 

We compared the performance of four SIMs for estimating and mapping fine-scale fuel loads: classification 

(CL), multiple linear regression (LR), ordinary kriging (OK), and regression kriging (RK). For LR and RK, we 

included local basal area, cover type, aspect, and percent slope as auxiliary variables. The CL model was based 

solely on the predicted cover type. For OK and RK, we predicted each fuel component separately with fitted 

auto-semivariograms.  

We assessed the comparative performance of each SIM with a k-folds cross-validation approach. We chose the 

following statistics to assess SIMs’ performances: mean error (ME); mean absolute error (MAE); mean absolute 

percent error (MAPE); and Pearson’s correlation coefficient between observed and predicted values. 
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3. Results and Discussion 

All SIM methods yielded reasonably unbiased fuel load estimates, with mean error within 3% of the 

observations (Table 1, Fig. 1). Except for RK predictions for the total fuel load, all approaches resulted in a 

slight underprediction bias. Although a minimal bias was associated with all SIM, OK consistently resulted in 

the greatest bias.  

Table 1. Summarization of cross-validation from spatially interpolating surface fuel components’ loads in the Pike 

Forest Dynamics Plot. 

 

The MAPE varied from over 100% to around 40%, depending on the specific fuel component and spatial 

interpolation method (Table 1). The two Kriging based approaches evaluated produced lower MAPE than either 

CL or LR, with RK producing the lowest MAPE across all fuel components. However, there were relatively 

small differences in MAPE among the SIM, with the best-performing SIM reducing MAPE between 2 and 8% 

compared to the worst-performing SIM. The Pearson Correlation coefficients ranged from 0.07 to 0.63, 

depending upon the fuel component and SIM. RK resulted in the greatest Pearson correlation coefficient of all 

SIM tested regardless of the fuel component. 

Table 1. Summarization of cross-validation from spatially interpolating surface fuel 

components’ loads in the Pike Forest Dynamics Plot. 

Component Method ME MAE MAPE robs,pred 

1-hour 

CL 0.001 0.192 67% 0.36 

LR 0.001 0.193 68% 0.40 

OK 0.007 0.185 65% 0.38 

RK 0.004 0.180 63% 0.44 

10-hour 

CL 0.001 0.468 70% 0.13 

LR 0.001 0.480 72% 0.11 

OK 0.010 0.451 68% 0.24 

RK 0.004 0.454 68% 0.27 

100-hour 

CL 0.005 0.963 111% 0.09 

LR 0.005 0.966 111% 0.07 

OK 0.011 0.899 104% 0.23 

RK 0.001 0.894 103% 0.23 

Litter 

CL 0.000 0.143 50% 0.14 

LR 0.000 0.142 50% 0.15 

OK 0.000 0.134 47% 0.32 

RK 0.000 0.130 45% 0.40 

Duff 

CL 0.004 1.119 58% 0.55 

LR 0.004 1.082 56% 0.56 

OK 0.022 1.006 52% 0.60 

RK 0.001 0.973 51% 0.63 

Total 

CL 0.012 2.090 48% 0.43 

LR 0.011 1.830 46% 0.48 

OK 0.061 1.960 49% 0.36 

RK -0.006 1.740 43% 0.53 
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Fig. 1 Fuel load maps predicted in the Pike Forest Dynamics Plot by four spatial interpolation methods of 1-hour, 10-

hour, and 100-hour woody fuels, litter, and duff surface fuel components, and total fuel load. 

Fuel maps are commonly utilized by fire and land managers across a range of spatial scales to assist with fire 

suppression planning, locating and designing wildland fuel treatments, evaluating fire hazard and risk. Fine 

scale variation in fuel characteristics is increasingly recognized as important driver of fire behaviour and effects 

and as such, there is a growing demand for high-resolution maps of the wildland fuels. Of the four SIM 

evaluated, regression kriging provided the best overall estimation of surface fuel load for all fuel components. 

our findings indicate that RK was able to better capture the fine-scale spatial variability in fuel load and therefore 

is the preferred method to produce spatially interpolated fine-scale fuel maps. 
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