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Abstract 

Coupled fire-atmosphere systems are currently developed to respond to the need of operational system in air quality and 

fire attack management. This work participates to this effort by proposing a simulation strategy where the plume is 

simulated using fire observation. Such approach can provide reference test case for more complex coupled fire-

atmosphere simulation. Using the Forefire-MesoNH system, we simulate the plume evolution of a landscape scale burn 

where the fire is not simulated as a spreading front but rather prescribed from multiple fix burners controlled with 

observation data. The simulation of the plume formed from a 7-hectare savannah fire conducted in Kruger National Park 

in 2014 is demonstrated using helicopter-borne observations georeferenced at 1-m resolution and post-processed to 

extract information of heat fluxes at pixel level.  

 

 

1. Background 

Over the past 20 years, the development of earth observation (EO) satellite product enable the observation of 

wildfire at the global scale and show an increased of fire activity in fire-prone regions such as western USA or 

eastern Australia (Andela et al., 2017), most probably because of the high population living in Wildand-Urban 

Interface (WUI) in those regions (Doerr and Santı́n, 2016). To mitigate wildfire effects, operational forecast 

systems have been developed with either focus at fire scale for application in fire operational attack like the fire 

growth model FARSITE (Finney, 1998), or at plume scale for application in air quality like the Smoke Research 

Forecast (SRF) system BlueSky (Larkin et al., 2009). 

More recently, coupled fire-atmospheres systems have been developed to resolve simultaneously the plume 

updraft/smoke dispersion, the propagation of the fire front, and their mutual interactions. Several coupled 

systems are now making references: CAWFE (Coen et al 2013), WRF-SFIRE (Mandel et al 2011) and MesoNH-

ForeFire (Filippi et al 2013). While still mostly used as research tools, they are intended to become operational 

(Kochanski et al 2016). They are design to simulate landscape-scale (>100m) propagating fire, and therefore 

forced to rely on highly parameterized fire model as current computational resources cannot resolve such 

domain size at the resolution required to capture combustion processes that responsible of the fire front 

dynamics (<1cm). In atmospheric model grids, fires are set as front lines with associated Rate Of Spread (ROS) 

and sensible heat flux predicted according to local orography and local modelled atmospheric variables (ie wind 

speed, humidity).  
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To the authors knowledges, apart from the recently released Rx-Cadre experiment dataset (Ottmar et al 2016), 

no other dataset exists that can provide simultaneous information on both the fire and the atmosphere states, and 

therefore can be used to run detailed validation of coupled fire-atmosphere system. Unfortunately, the prescribed 

burns of the Rx-Cadre experiment were set in non-homogeneous vegetation and with complex ignition pattern 

that make them difficult to simulate as detailed vegetation map and fast return observation of the front 

propagation are then required. Nevertheless, validation exercise against observation already exists for MesoNH-

Forefire (Filippi et al. 2013) and WRF-SFIRE (Kochanski et al 2013). They are both based on the simulation of 

the Fire-Flux field work campaign which took place in 2006 (Clements et al. 2007) in a homogenous grass field 

in Texas. The fire was set with a single front ignition. However, no comprehensive fire behavior data were 

collected for this experiment, and the model validations were conducted against turbulent flux measurements 

acquired with an instrumented mast located along the propagation of the fire front.  

 

2. Objective 

To improve the validation of coupled fire-atmosphere system and assess further the impact of the fire model 

assumption on simulated fire behavior we need validation datasets for scenarios in which the fire induced winds 

influence fire front behavior (Liu et al 2016) as for example fire front acceleration induced by front merging. In 

such scenario, plume dynamics point measurement like in Clements et al. 2007 and Clements et al. 2019 are 

much more difficult to perform due to the more complex predictable location of best measurement point.  

 

Figure1: Time series of LWIR, and combined MIR/VIS images for 6 times along the 20 minutes of the duration of the 

Skukuza6 fire conducted on the 26th of June 2014 in Kruger National Park (South Africa). The spatial resolution is 

1m for all images. Time after ignition are t=249, 419, 556, 656, 750, 931 s from top left to right bottom. Corner fires 

are visible on the LWIR images but were not used in the georeferencing. The VIS images show the perimeter of the 

active fire contour (blue line) as segmented by Convolutional Neural Network trained on the KNP dataset, and the 

MIR contour plot extracted from the MIR images.  
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In situation of high variable fire behavior and potential complex front geometry structures, infra-red high 

temporal and spatial resolution observation have shown capability to capture fire front dynamics (Paugam et al 

2021, Paugam et al 2022). To help continuing the development of fire-atmosphere system, we show here the 

potential such airborne high-resolution observation to force plume simulation. 

 

3. High resolution experimental fire observation 

We use here the orthorectified IR image data set of experimental 7-ha savannah fire processed in Paugam et al 

2021. The epxeriemtal setup required to produce such data set require to have a set scene (no wildfire), but the 

common constraint on having bone fires presence on every image is released (Pastor et al 2012, Paugam et al 

2013), hence making easier high frequency observation. The set of algorithm developed in Paugam et al 2021 

are built on background feature tracking and image to image correlation optimization (Evangelidis and Psarakis 

2008) for application on Long Wave Infra-Red (LWIR) and Middle Infra-Red (MIR) images. Orthorectifucation 

of visible image time serie are also possible if the plume is not too dense. 

Results of orthorectified images collected during a fire conducted on the 26th of June 2014 on the KNP plot 

named Skukuza6 are shown on Fig 1. Hereafter this fire is referenced as Skukuza6. During the KNP fieldwork 

three cameras were operated simultaneously from a hovering helicopter:  

• a visible camera (GOPRO Hero1, 1Hz, 3849x2880 pxs) with its IR filter removed to better capture 

flame location,  

• a Long Wave Infra Red (LWIR) camera (OPTRIS 400, 7-13µm, 1Hz, 382x288 pxs, 𝑇 ∈ [250,1700] 

• and a Middle Infra Red (MIR) camera (FLIR AGEMA 550, 3.9 µm, 3Hz, 320x240pxs, 𝑇 ∈
[473,1073].  

Fig 1 shows, for 6 times along the 20 minutes of the fire duration, LWIR images together with quasi-

simultaneous combined MIR/visible images. The hovering altitude of the helicopter and the sensor resolution 

of the LWIR and MIR cameras allow a spatial resolution of 1m.  

The second step to the image postprocessing tasks is the segmentation of the fire front. Among the 3 cameras 

available, we decided to base our approach on LWIR images only. This choice is explained by: (a) using only 

one band avoid potential problem related to time-synchronization, (b) VIS images can be masked by smoke, 

and (c) the MIR camera used here is not as widespread in the scientific community as the LWIR camera. The 

LWIR image front segmentation is based on a deep learning approach, it is described in Paugam et al 2022. 

Using a limited number of manually tagged front, a series of Convolutional Neural Network (CNN) is designed 

to develop a multiple step learning methodology gradually including information from 4 different burns. Based 

only on 10 initial manually segmented images, a series of 14 CNN learn front features from each other, using 

cumulative knowledge and manual annotation adjustment from previous front prediction. Transfer learning 

techniques are used to improve CNN response when including new burn to reduce overfit inherent to the first 

learning steps. Results of the final CNN is shown on the visible images of Fig. 1 (see blue line).  

 

4. Plume Simulation 

Using previous high-resolution fire front observation, this section intends to simulate the plume triggers by the 

heat flux and the emissions induced by the spreading fire front and the cooling trail located behind the front. 

We proposed here to use the MesoNH model (Lafore et al 1998) to simulate the atmosphere above the fire while 

the fire is simulated as a multitude of fix burner (one per cell of the atmospheric grid) that are switched on and 

off with a set strength accordingly to the fire observation (Mell and Linn 2017). The fluxes conversion from the 

observation resolution (1m) to the atmospheric grid (10m) is done via the ForeFire model (Filippi et al 2013). 

The front spread prediction of ForeFire are not used here, ForeFire control each cell as a burner where the heat 

flux activation is set using maps of arrival time, time of residence and total energy released. This latter is 

computed from the measurement of the Fire Radiative Energy (Wooster et al 2005) and an assumed radiation 

to total energy ratio of 10%. To better model the evolution of the fire spread each burner differentiated the 

phases of flaming and smoldering, so that a burner is defined with the inputs of arrival time, flaming residence 
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time, flaming FRE, total burning time and smoldering FRE. See Fig 2 for inputs associated with the Skukuza 6 

fire introduced in the previous section.  

 

 

Figure 2: Inputs maps of ForeFire for the Skukuza6 

fire. Unburnt zone (in white) differ from the fire 

front contour of Fig 1 (blue line). The present maps 

were generated with an older version of the data set 

presented in Fig 1.  

The arrival time map concatenates information from all the fire front CNN prediction to map the time of first 

appearance of the fire front in a pixel. FRE is computed from the time integration of the Fire Radiative Power 

that is evaluated using the MIR images following the formulation of Wooster et al 2005. The flaming residence 

is defined as the time is takes to a pixel (1m2) to cool down below a certain threshold (here we used a MIR 

brightness temperature of 600K). The total burning time is the time it takes for a pixel to cool down to 

background temperature.  

 Emissions linked to the heat flux is also 

passed to MesoNH via the FRE formulation 

(Wooster et al 2005) with a conversion 

factor of 0.4 (kg/s/MW) and emission 

factors set for the flaming and the 

smoldering phases. In this first simulation, 

only a passive tracer is set. It uses emission 

factor of 0.05 and 0.01 for flaming and 

smoldering, respectively.  

The MesoNH simulation uses a 10 m spatial 

resolution and a 4 second time step. It is run 

in LES mode. The initial condition is set 

using a radio sounding and a spin-up time of 

1500 seconds that was necessary to generate 

the boundary layer (see tke profile on Fig 3). 

The radio sounding was generated from a MesoNH simulation using 3 nested models and forced with ERA 

interim reanalysis data. Fig 3 shows a perspective view of the plume simulated by MesoNH that was induced 

by fix burners set accordingly to the Skukuza 6 fire observation. The heat flux map generated by ForeFire and 

pass to MesoNH is seen on the ground level of the MesoNH grid. 

Fig 4 shows the 10m wind data from the first level interpolated on the 2m fire data grid for 2 times of the fire 

evolution: at the start and end of the large ellipsoidal front spreading on the left of the plot. The fire shows a 

wind dominated dynamics with wind passing through the front (Finney et al 2015, Frangieh et al 2010). The 

wind field a ground level is significantly alter downwind to the front, see left shift southward of the front at 

t=600s, or the acceleration in the unburnt area at t=700s. To analyse the impact of the coupling between the fire 

dynamics and the wind field, Fig 5 shows correlations between the cross product of the ROS and the wind field 

and (a) the norm of the ROS and, and (b) the Byram’s Fire Intensity (FI). FI is computed following the approach 

of Johnston et al (2017). In the correlation we only select point from the fire front with ROS greater than 0.2m/s 

to focus on the spreading part of the fronts and remove the back fire and dead front.  

 

 

Figure 3: perspective view of the simulated plume of the Skukuza 

6 fire a time t=584s after ignition. 
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Figure 4: Wind vector field at 5m heigth in green (first MesoNH level) and fire front ROS in grey at 2m resolution 

for 2 times of the fire evolution: start and end of the main ellipsoidal front spreading on the left of the plot. The black 

line shows the fire front while the convective heat flux computed by the forefire flux scheme is reported in the 

background at the 10m MesoNH resolution. 

 

  

Figure 5: Correlation of the cross product of the ROS vector (uROS) and the wind field (uWIND) with the norm of 

the ROS (top panels) and the Fire Intensity (FI) for the same two times t (left and right panels) as Figure 4. 

No clear correlation appears from Fig 5. The dynamics of the front does not seem to impact the wind speed near 

the front. This is probably due to the ambient wind direction variability that can be seen in Fig 1, for example 

at time t=656s, and t=750s. The ambient wind oscilates between west and south during the fire evolution as 

shown by smoke released by smodlering spots in the back of the fire. This variability is not taken into account 

in the MesoNH simulation that uses a single radio sounding and a spin-up time to build its boundary layer. As 

a result the ellipsoidal front spreading from the left of the plot edge is spreading in the MesoNH simulation with 

a southwards wind (see Fig 4 left panel) when visible image shows a clear eastwards wind at this time. This 

issue shows also with a right shift of the the wind field from the ROS direction in Fig5, see the large number of 

negative cross product at t=700s. Improving the ambient wind input will be investigated in future work as well 

as the impact of the heat release scheme use in forefire. Comparison with the default nominal flux of Filippi et 

al (2013) will be considered. 

 

5. Conclusion and Perspectives 

This work presents the development of a methodology to simulate fire plume from airborne IR observation. 

Unfortunately, as no atmospheric data or plume sampling were collected during the burn we simulate, no 

validation of the simulated plume can be run. Furthermore, no details fuel load was performed, hence making 

fully coupled fire-atmosphere simulation more challenging. This first attempt to simulate a plume from fire 
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observation is therefore only a proof of concept that emphasize use of airborne IR observation in the on-going 

effort of the fire community in developing fire-atmosphere coupled models. Details knowledge of plume 

structure and composition also shows potential application in current effort in 3D radiative transfer simulation 

in fire scene (Paugam et al 2021b).  
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