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Abstract 

Accounting for multiple changing systems in environmental decision making is challenging and requires balancing 

several competing priorities. In fire risk, one approach which is increasingly used to capture uncertainty within multiple 

systems and to prioritise management efforts is Bayesian Network (BN) analysis. Here, we have used a BN to understand 

the interactions between ignition likelihood, containment probability, fire behaviour, and fire weather, alongside the 

subsequent risks to people and property. We developed, populated and tested a BN which classifies the likelihood of 

outcomes for each of these systems. We then apply this BN to grid of 72,000 potential ignition locations accross Victoria 

to predict house and life loss values under conditions capturing the top ten worst ranked weather days in the history of 

each location. We use Phoenix fire behaviour simulations and landscape scale raster data to populate the parent nodes 

for each ignition and extract the expected values for predicted nodes under different weather scenarios and varying levels 

of suppression. We found values predicted by the BN broadly matched the spatial patterns of risk produced in Phoenix 

i.e., areas where risk was highest and lowest in terms of fire area and house loss aligned. However, the values are rescaled 

by the BN as it takes into account the influence of ignition likelihood and containment probability on risk estimates. The 

BN is also able to capture uncertainty around the values presented from across the top ten Phoenix simulations, so the 

recorded values represent the likely outcome for each node given the range of potential weather conditions in those 

scenarios. We show that BNs can be a useful management tool for estimating fire risks across a range of weather 

scenarios and locations while still considering ignition likelihood and suppression effectiveness.  

 

 

1. Introduction 

Fire is a globally significant environmental disturbance which increasingly presents risk to people, property, 

infrastructure, and biodiversity (Banks et al. 2011; Moritz et al. 2014; Filkov et al. 2020; Borchers Arriagada et 

al. 2020; Higuera and Abatzoglou 2021). Managing wildfire risks is complicated as decision makers need to 

account for several interacting systems which may vary spatially and temporally (Thompson and Calkin 2011; 

Penman et al. 2020).  

Weather conditions conducive to ignition and spread, as measured by both temperature and the forest fire danger 

index (FFDI; Noble et al., 1980), are expected to increase under climate change (Olson et al. 2016; Clarke and 

Evans 2019). Therefore, improved understanding of ignition likelihood will provide managers with some of 

information about where and when potential wildfire risk is highest. Additionally, understanding the factors that 

contribute to containment probability is also essential as suppression efforts play a critical role in limiting 

wildfire spread and reducing risk to people and assets (Penman et al. 2015; Dunn et al. 2017). The likelihood of 

ignition and containment both intersect to influence how a fire spreads and the potential risk it poses to lives, 

infrastructure, property, and biodiversity.  

Current wildfire management frameworks in Australia generally only consider containment probability and 

ignition likelihood in isolation and do not account for interactions between them. This makes it difficult for 

managers to prioritise areas of highest concern for different fire weather or environmental conditions. One tool 

that is increasingly being used to support environmental decision-making within multiple systems is Bayesian 

Network Analysis (Penman et al. 2011, 2014, 2020; Hradsky et al. 2017; Marcot and Penman 2019). Bayesian 

Networks (BNs) are statistical tools uniquely capable of managing the suite of uncertainties which arise in 

complex environmental systems, making them ideal for risk analysis research (Pollino et al. 2007; Dlamini 
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2010; Johnson et al. 2010; Johnson and Mengersen 2012; Kelly et al. 2013). A major advantage of using a BN 

in structured decision making is that it allows the use of data from multiple sources on different scales (Pollino 

et al. 2007; Penman et al. 2014; Marcot and Penman 2019). They can also be applied at various spatial 

resolutions which is an important aspect of managing risk, particularly for disturbances such as fire which 

impact both local and landscape scales. 

Here, we aimed to understand how ignition likelihood, containment probability and subsequent fire behaviour 

impacts the distribution of wildfire risks across the state of Victoria, Australia. We build, parameterise, and test 

a Bayesian Network to answer two questions 1) how are the risks to people and property distributed across the 

state given a range of weather scenarios? and 2) how do ignition likelihood and containment probability 

influence the distribution of these risks for a range of weather scenarios? We combine our Bayesian Network 

with PHEONIX Rapidfire (hereafter Phoenix; Tolhurst et al. 2008) fire behaviour simulations. Phoenix is an 

application which simulates one or more fires using a characterisation model to capture the details of fire spread 

such as flame height, rate of spread and ember production etc. Here we use Phoenix simulations to generate fire 

impacts for ignitions across the landscape and to compare current risk estimates, which do not consider the 

likelihood of ignition or containment, with our estimates of risk from a Bayesian approach.  

 

2. Model framework 

Our modelling framework involved three key stages. First, we developed a conceptual model combining ignition 

likelihood, containment probability and fire weather to predict risk to houses and lives accross a range of scenarios and 

landscapes. This conceptual model (Figure 1) includes two random forest models fit to state wide datasets of historical 

ignition events and suppression efforts in Victoria. We took the top six most important variables from each of these models 

to include in our Bayesian Network. The second stage of our modelling framework expands the conceptual model into an 

influence diagram capturing the variables important to each of our sub-models, and from our Phoenix fire behaviour 

simulations, as nodes in our network. Lastly, we populated the conditional probability tables within the model using real 

data to learn the relationships between nodes through Bayesian inference (Korb and Nicholson 2010). 

 

Figure 1: Conceptual model underlying the final Bayesian Network used in this study. Green boxes show sub-models 

and output nodes in the network. Blue boxes show decision nodes in the network.  

We applied the network in R (version 3.6.2) to 71808 ignition locations across Victoria. Data on the top 50 FFDI values in 

history observed at each ignition location was provided by the Victorian State Government’s Department of Environment, 

Land, Water and Planning (DELWP), who also provided us with Phoenix fire simulations under the top ten of these 50 

FFDI values. To apply the BN to these locations we cycle through all locations individually. Using the FFDI values, and 

ten example Phoenix runs, we set the probabilities of getting each FFDI, fire area, fire area at two hours, and house loss 

value at that location. For each location we extract the predicted ignition likelihood, and containment probability, alongside 

the rescaled fire area at two hours, final fire area, house, and life loss. We compare the outputs from our BN to those 
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produced by Pheonix runs to determine whether accounting for containment probability and ignition likelihood, as well as 

the range of possible phoenix outcomes, influences the predictions of risk. 

 

3. Results and implications 

The estimates of fire risk produced by Phoenix and those predicted by the BN are spatially consistent. The ignitions with 

the largest predicted fire area tend to occur in the same locations in both methods and therefore hotspots are easily identified 

using either approach. However, the BN produced rescaled values when considering the likelihood of ignition and 

probability of containment in its risk estimates for some areas. The fire area values, as well as the predicted house loss and 

life loss were far lower in the BN as compared to Phoenix. The extent to which values were rescaled also varied across the 

state (Figure 2). When considering ignition likelihood and containment probability the greatest reductions in fire area 

occurred in the north west and eastern parts of Victoria (Figure 2; A). Probably because ignition likelihood is lower in these 

areas as they are less populated and prone to human ignitions. Comparatively, house loss declined most in the central areas 

of Victoria close to the major settlements of Melbourne and Geelong (Figure 2: B). This is probably because ignition 

likelihood is lower than expected by Phoenix and suppression efforts are most targeted and effective in these areas. Areas 

with little change in house loss indicate either low predicted values using both methods or little effect of ignition likelihood 

or suppression on outcomes. This could provide managers with a useful tool for prioritising allocation of suppression 

resources to these areas.  

 

Figure2: Maps showing where the values predicted by Phoenix were different compared to those predicted by the BN 

for Final fire area (A) and house loss (B) nodes. Negative values indicate the Phoenix predicted values were higher 

than those predicted by the BN. The colours indicate the extent of these differences accross the state with dark purple 

indicating no or little change and light yellow showing the maximum predicted change.  
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4. Conclusions 

Our results highlight the importance of considering multiple systems in fire risk analysis. Ignition likelihood and 

containment probability, as well as the environmental variables and management decisions which may influence these 

systems, provide essential insight into where in the landscape fires may be most impactful. While the results of our BN 

broadly matched the spatial patterns produce by Phoenix, the rescaled values, and the spatial differences in where rescaling 

was most pronounced, may offer managers nuanced insights into where resources may be most needed or most effective. 

This approach is also able to better account for uncertainty in multiple competing systems and can be applied to a wide 

range of weather scenarios and management decisions. Applying a more holistic approach to fire risk analysis will be 

required in the future as climate mediated shifts in ignition likelihood and fire behaviour change the patterns of fire risk to 

people and property. Understanding these changes will allow managers to better allocate resources to fuel management 

and suppression efforts.  
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