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Abstract 

Spatial wildfire ignition predictions are needed to ensure efficient and effective wildfire response but robust methods 

for modelling wildfire occurrence have not been fully evaluated. Here we leverage high resolution, static spatial data to 

predict the ignition locations of human and naturally-caused wildfires across the state of Montana (USA). We leveraged 

a 25-year historical wildfire dataset (1992-2017) and four high resolution spatial variables that capture fuel availability, 

topography, geographic location and human transport infrastructure. We combined these data to train spatial logistic 

regression Generalized Additive Models (GAM) designed for big datasets (BAM) for both human and natural ignitions 

and we tested the efficacy of incremental changes in model complexity. Results showed that the best human and natural-

caused ignition models were highly capable of distinguishing locations with and without new wildfire occurrences 

statewide (AUC = 0.89 and 0.84 respectively). Natural-caused ignitions were strongly influenced by slope and location, 

while human-caused fires were best predicted by distance to roads as well as terrain and fuel availability. Finally, these 

spatial fire occurrence models can be combined with temporally-variant data to predict the spatial and temporal 

distribution of wildfires across the state with the view that these methods can be used to develop predictive models at 

larger scales. 

 

 

1. Introduction 

Wildfires are present in all vegetated environments worldwide (Krawchuk et al. 2009; 2011; Archibald et al. 

2013), where they would otherwise be beneficial, are suppressed to limit or prevent immediate human-related 

loss (Riley et al. 2018). Although effective wildfire planning requires early information about where new 

ignitions are likely to start (Belval, Stonesifer, and Calkin 2020), this information is generally not available at 

high spatial resolution. 

New wildfires start when there is an ignition source, sufficient fuel and suitable weather conditions. Natural 

ignitions are mainly caused by cloud-to-ground lightning strikes and depend on the timing and lightning 

characteristics in relation to fuel condition (Mitchener and Parker 2005; Schultz et al. 2019). Negligence causes 

are the most common ones (Prestemon et al. 2013) being favored by road networks (Faivre et al. 2014; Benefield 

and Chen 2022). Therefore, differentiating the spatial distributions of wildfire ignitions is crucial to designing 

and implementing source-specific prevention and mitigation strategies. 

Wildfire ignition likelihood may be modelled if proxies are included to represent the fuels, weather, topography 

and human presence that control their spatial distribution (Barreto and Armenteras 2020). Although fuels are 

seasonally dynamic, static factors such as loading and continuity may limit the wildfire location where 

insufficient fuels prevent propagation (Briones-Herrera et al. 2019). Road networks affect fire activity in two 
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ways: first, making wildlands accessible to humans, thus promoting anthropogenic wildfire ignitions (A. 

Syphard et al. 2007; Narayanaraj and Wimberly 2012); and second, roads enable ground-based firefighting 

resources to quickly respond to new events (Thompson, Gannon, and Caggiano 2021). Thus, if ignition sources 

are differentiated and adequate spatial biophysical-demographic drivers are identified, wildland fire ignition 

likelihoods could be modeled, mapped and predicted across large areas. 

 

Figure 1. Conceptual scheme of the dual component of wildfire hazard or danger: the static factors 

and the dynamic factors. 

In this study, we develop and evaluate several spatial models of wildfire occurrences to predict ignition 

likelihood across the state of Montana (US). To do this, we focus solely on constructing static ignition models 

by combining fire records with a suite of temporally invariant factors (Figure 1). We evaluate the efficacy of 

increasingly more complex models to map human and natural ignition probabilities. Our main objectives are: 

a.) to evaluate the contribution of different environmental-human factors considered crucial to wildfire ignition, 

b.) select the best predictive models’ parameters configuration, and c.) map static human-natural wildfire 

ignition likelihood. 

 

2. Material and Methods 

2.1. Study area 

Montana covers an area of 376,962 km2 and it is characterized by west-to-east gradients in climate, topography, 

vegetation cover and wildfire causality (Figure 2).  
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Figure 2. Maps of Montana shown with the road network. (a) Existing Vegetation Type (EVT). (b) and (c) Locations 

of natural and human ignitions (1992-2017). (d) Slope. (e) Maximum NDVI (1996-2017). (f) Distance to roads. 

 

2.2. Data preparation 

Wildfire point records from 1992-2017 were obtained from the Fire Program Analysis Fire-Occurrence 

Database (Short 2014), containing geographic coordinates of the origin, discovery date, ignition cause and final 

fire size. Wildfires were partitioned according to their causality (natural or human, excluding the unknown). 

The dependent variable (presence-absence) was obtained from the 30m binary masks of new wildfire reports. 

Several static potential covariates were explored (Figures 2d - 2f). To represent fuel availability, smoothed 

rasters of NDVI were retrieved from the Blended Vegetation Health Product (Kogan 2001; Yang, Kogan, and 

Guo 2020). Maximum-NDVI was chosen to capture the peak amount of above ground live biomass (Xu et al. 

2012). Topography was represented by slope, obtained from the 30m resolution Digital Elevation Model 

(Rollins 2009). Distance from roads was used to represent accessibility, by downloading a road shapefile from 

the United States Census Bureau (US Census Bureau 2015), and creating a raster of distance to roads at 30m 

resolution.  

 

Figure 3. General workflow for model 

building and evaluation including inputs, 

sampling of wildfire presence-absence, 

extraction of covariates, creation of a point 

wildfire database, model fitting, and the 

final spatial predictions of wildfire ignition 

probabilities. 
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The datasets used were derived from the presence/absence masks of wildfires and the covariables’ rasters 

(Figure 3). First, presence only datasets were created by using the grid cells containing a new wildfire report. 

This produced two presence only datasets (one for cause), together with their associated value for slope, 

maximum-NDVI, distance to roads and longitude-latitude. The presence only datasets were then split into 

training (70%) and testing (30%) datasets. Absence only datasets were created by randomly selecting grid cells 

from the binary masks at locations without any wildfire recorded. To provide balanced datasets, the number of 

absence grid cells was equal to the number of presence ones. After using the absence grid cells to extract the 

covariates, the absence only datasets were themselves spit again into training and testing datasets. Combining 

the presence and absence datasets for each ignition source yielded four datasets: the natural-caused training and 

test datasets, and the human-caused training and test datasets. 

2.3. Model construction and evaluation 

We included Generalized Additive Models (GAMs) (A.D. Syphard et al. 2008; Bar Massada et al. 2012) apart 

from Generalised Linear Model (GLMs), since the former overcomes the apriori assumption of linearity by 

replacing the linear terms with smoothed (Vilar et al. 2010). In this work, a suite of logistic-GLMs/GAMs were 

built in R (R Core Team 2021), starting with simple logistic-GLMs/GAMs to examine the isolated effects, using 

slope, maximum-NDVI and distance-to-roads as the sole explanatory variables. Then covariates were 

procedurally added using the default basis dimension (k = 10) to create increasingly more complex models with 

the goal of achieving the best fit with the fewest explanatory variables necessary. Additional variables were 

retained if they were statistically significant and if the percent deviance explained increased by more than 0.1%. 

Once added, the basis dimension in the spatial-GAM were iteratively increased to ensure that the smoothed 

terms had sufficient degrees of freedom without being overly complicated or computationally intractable. After 

fitting the models, each one was applied to the held back testing datasets to predict the natural and human-

caused wildfire probabilities. Receiver operating characteristic (ROC) curves (Bradley 1997) and the area under 

the ROC Curve (AUC) were used to assess the models accuracy. 

 

3. Results 

Simple logistic-GLMs/GAMs built with one covariate illustrate the isolated effects of slope, maximum-NDVI 

and distance-to-roads on the probability of a new wildfire ignition (Figure 4). In contrast to the GLMs, the 

GAMs capture nonlinearities in the response, particularly at the lower and upper limits of slope and maximum-

NDVI. Although there are strong differences between the GLM and GAM fits at the extremes, only a small 

fraction (5%) of the natural and human-caused ignitions in the training data had a slope >30º or a maximum-

NDVI > 0.56. Moreover, both (GLM and GAM) fits exhibit monotonic behaviour over most of the range of the 

covariates, thus obtaining similar AUCs. 
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Figure 4. Simple General Linear Models (GLMs) and simple General Additive Models (GAMs) built with one 

covariate to predict the probability of natural ignitions (left column), and human ignitions (right column). The dotted 

vertical lines indicate the 5th and 95th percentiles of the covariates and capture 90% of the training data.  

In the simplest version, all covariates were statistically significant (p ≤ 0.01) and the percent deviance explained 

increased when spatial coordinates were added. However, whereas all variables were significant in the spatial-

GAM of human-caused ignition probability, distance-to-roads was not significant in the spatial-GAM of natural 

ignition probability and was therefore excluded (Table 1). Initiating spatial-GAMs, the basis dimensions (k) 

were iteratively increased for all the smoothed terms. However, for slope, maximum-NDVI and distance to 

roads this had little effect on the percent deviance explained compared to the values of k for the geographic 

coordinates. Ultimately, the basis dimension for the smoothe geographic coordinates was increased until k = 50 

and k = 35 for the natural and human-caused ignition models, respectively. 

Table 1. Development from the General Linear Model (GLM) to the General Additive Model (GAM) and spatial-

GAM. Formulas are presented, where α is the intercept, υ1= slope, υ2= maximum-NDVI, υ3 = distance to roads, x = 

longitude and y = latitude. The "s()" functions indicate the smoothed terms in the GAMs.  

Version Cause Formula AUC 

GLM Natural 

Human 

pr(yn)= α + υ1 + υ2 + υ3 

pr(yh)= α + υ1 + υ2 + υ3 

0.75 

0.77 

GAM Natural 

Human 

pr(yn)= α + s(υ1) + s(υ2) + s(υ3) 

pr(yh)= α + s(υ1) + s(υ2) + s(υ3) 

0.76 

0.80 

Spatial GAM Natural 

Human 

pr(yn)= α + s(υ1) + s(υ2) + s(x,y) 

pr(yn)= α + s(υ1) + s(υ2) + s(υ3) + s(x,y) 

0.84 

0.89 

 

According to the held-back testing (Figures 5 and 6), the logistic-GLMs exhibited the most uniform probability 

distributions and the greatest overlap between the presence-absence probabilities. In turn, the logistic-GAMs 

shifted the probability distributions towards higher values for the presence locations and towards lower values 

for the absence locations, indicating better differentiation. Overall, the spatial-GAMs (with geographic 

coordinates and optimized k values) yielded the greatest separation between the probability distributions. For 

the spatial-GAMs, half of the locations with a natural and human ignition had a predicted probability >76% 

and >80%, respectively; and half of the locations without a natural and human ignition had a predicted 

probability <25% and <18%, respectively. Consequently the spatial-GAMs offered the best performance, with 

AUC = 0.84 (natural-cause) and AUC = 0.89 (human-cause). 
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Figure 5. Evaluation of the General Linear Models (GLMs), General Additive Models (GAMs) and spatial-GAM used 

to model the probability of natural wildfire ignitions. Each model was applied to the held back testing datasets and the 

frequency distributions shown in (a)-(c) indicate the count of presence (red) and absence (black) grid cells according 

to their predicted probability. 
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Figure 6. Same as Figure 5, but for human wildfire ignitions. 

 

For natural ignitions, the response to slope (Figure 7a) shows a likelihood increase up to ∼30º and decreasing 

thereafter with a greater predictive uncertainty due to fewer training data. In turn, the likelihood of a new 

wildfire was relatively insensitive to maximum-NDVI until a value of ∼0.5 and then decreased. The geographic 

coordinates in the logistic-GAM imparted a spatial smoother, with locations in the Northern Rocky Mountains 

and south-eastern MT, exhibiting the highest probabilities. For human ignitions, the response of the spatial-

GAMs to slope and distance to roads was similar to GAMs with the exception that, again, of maximum-NDVI. 

Here, distance to roads played a prominent role in the spatial-GAM of human-caused ignitions (50% of the grid 

cells containing a human caused wildfire located < 2,500 meters of a road). The spatial smoother revealed 

similar though slightly different patterns, most noticeably in northern MT along the Canadian border. 
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Figure 7. Partial effects plots for all smoothed variables in the spatial-GAM built to 

predict the probability of a natural wildfires. 

 

Figure 8. Same as Figure 7, but for human-caused wildfires. 

 

Generally, the 30m static probability maps were broadly influenced by the spatial smoothers (Figures 9a and 9c 

versus Figures 7c and 8d) and locally modulated by slope, maximum-NDVI and distance to roads. This is most 

evident in the spatial-GAM of natural ignitions where probabilities are lower in the valley bottoms and nearby 

shallower slopes, and in the spatial-GAM of human-caused ignitions where probabilities are highest along the 

road network. In fact, both spatial-GAMs predicted large areas with low probabilities of wildfire ignition (50% 

of the territory have <23% and <15% chances of a natural and human-caused ignition, respectively). Conversely, 

locations with a high predicted probability of a new wildfire are rare (∼2% of the state had >90% of ignition 

chance). 
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Figure 9. Maps of (a) the probability of a natural wildfire, and (b) the probability of a human wildfire obtained from 

the spatial-GAMs. Distributions of the land area proportion as functions of both causes are shown in (b) and (d), 

respectively. 

 

4. Conclusions 

In this study we have tested two different spatial-GAMs models using a daily wildfire database and drivers 

through a 25-year time span. Spatially, human model produced the highest wildfire probabilities, although the 

homogeneity of its greatest values were very clustered in particular areas. The inclusion of environment-human 

variables allowed us to forecast static wildfire probability in areas with a high wildfire activity and, thus, a future 

danger is expected. In addition to the advantage of easily updating the models as new available wildfire data, we 

find the selection of these basic variables to be practical. 
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