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Abstract 

Wildfires are a menace which is growing in intensity and spreading in range across all planet’s ecosystems causing 

devastation on the environment, wildlife, human health, and infrastructure. Most of the damage caused by forest fires is 

related to extreme wildfire events (EWEs). To foster prevention activities, a thorough understanding of territorial 

features determining EWEs is crucial in Civil Protection and fire management activities. An approach which learns from 

past wildfire events providing susceptibility, intensity and hazard maps is presented. This mapping approach leads to 

the individuation of the main drivers of EWEs and in the zonation of the areas more prone to hazardous and impactful 

wildfire events. The case study where the mapping approach is applied encompasses thirteen countries of the Eastern 

Mediterranean and Southern Black Sea basins. The presented results focus on wildfire susceptibility. A Machine 

Learning approach is pursued, by adopting open data layers as both predisposing factors and past wildfire events. 

 

 

1. Introduction 

Fire trends from the ‘70s up to now show on the average a decrease in burned area and number of fires, after 

the large impacts of the ‘80s wildfire seasons, in most of the Southern European countries, as demonstrated by 

(Turco et al. 2016). This can be mainly considered as the results of increasing firefighting capacities and 

awareness thanks to improved forecasting. However, impacts of climate change, coupled with the drastic 

modifications in land use and socio-economic conditions, occurred in the same period, have triggered a potential 

increase in frequency, extent and severity of wildfires worldwide (Doerr and Santín, 2016). Wildfires are 

growing in intensity and spreading in range across all planet’s ecosystems, causing devastation on the 

environment, wildlife, human health, and infrastructures (UNEP, 2022). In highly densely populated areas, 

recent studies indicate that most of the damage caused by forest fires is related to extreme wildfire events 

(EWEs) which represent less than 2% of the total number of fires (Catry et al., 2009; Tedim et al., 2013). Despite 

huge investments in fire suppression, firefighting activities cannot effectively cope with EWEs, even in cases 

of massive resource deployment (Fernandes et al., 2016).  

The impacts of the recent and recurrent EWEs in the Mediterranean highlight that societies are facing an 

increasing fire risk due to the combination of climate conditions and landscape-scale accumulation of fuel 

because of the almost complete abandon of rural activities. 

Recently, EWEs characterized the 2021 wildfire summer season, where Greece, Italy, Algeria and Turkey 

experienced a large number of severe wildfire events burning more than 630,000 ha (San-Miguel-Ayanz, 2022). 

The 2021 Algerian wildfires killed at least 90 people (ReliefWeb, 2021) resulting in the deadliest fires of the 

recent times after the EWEs in Portugal (2017) and in Mathi, Greece (2018). 
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It is evident that there is an urgent need to shift from suppression to prevention and risk mitigation in order to 

reduce such impacts. A limitation to this shift is represented by the absence of a collective and pervasive 

understanding of the conditions related with EWEs beyond both the sole cause of ignition and the effect of 

weather, which are the main uncontrollable aspects of EWEs. The fatalist approach which blames only ignition 

patterns and weather effects neglects that there is still plenty of room for knowledge improvement leading to 

the identification of priorities for effective wildfire prevention. Such knowledge begins with susceptibility, 

hazard and risk mapping, including the characterization of the exposed elements in terms of their value and 

vulnerability, and ultimately leads to the identification of the areas where EWEs can happen with more severe 

impacts. 

To foster prevention activities, a thorough understanding of the features of the territory determining EWEs is 

of crucial help in Civil Protection and fire management activities. From a technological point of view, there is 

plenty of data, tools and models which can be applied to this issue. 

A harmonized mapping methodology is needed to be applied at different scales. Synoptic time series of burned 

area a significant help to learn from the past, bringing useful knowledge to present wildfire management, 

determining the principal drivers of catastrophic wildfires. However, those time series may be not long enough 

locally to reach these goals. To circumvent this problem, a more vast and diverse area can be studied, to infer 

wildfire drivers in different climates, topographic and anthropogenic conditions. This is achieved using wildfire 

susceptibility, hazard, and risk maps, which can help decision makers and practitioners in wildfire management 

and long-term landscape management, strengthening proactive prevention activities adapted to local 

environmental and socio-economic contexts. The objective of such maps may range from the static assessment 

(hazard) to the dynamic one (danger). 

This is in line with the recent IPAFF European program, which targets Western Balkans (Albania, Kosovo*1, 

Montenegro, Serbia, North Macedonia, Bosnia-Herzegovina) and Turkey to empower capacities in forest fire 

risk assessment and mapping, considering static hazard and risk mapping across boundaries. 

The Authors with the presented work continue a research framework started at the local level (Tonini et al., 

2020) and recently expanded at the national scale (Trucchia et al., 2022). The described work is one of the first 

attempts (up to the Authors’ knowledge), to model wildfire hazard at the supernational scale, where useful 

information can be drawn in view of cross-border wildfire management, supporting also the European Civil 

Protection Mechanism.  

1.1. The proposed framework to wildfire hazard assessment and mapping 

The proposed approach combines multi-source data gathering, model / expert-based processes and Machine 

Learning (ML) analyses. 

This preliminary work, undertaken for a large set of countries in the Eastern Mediterranean and Southern Black 

Sea region, tries to get the most from the available global data sets, using only open data. 

The main steps are summarised below: 

1. Susceptibility mapping - wildfire susceptibility is defined as the static probability of experiencing 

wildfire in a certain area, depending on the intrinsic characteristics of the terrain. This can be achieved 

with several approaches, ranging from the statistical hierarchical ones to the ML driven ones. 

2. Intensity mapping - wildfire intensity is defined as the rate of heat energy released by the fire. At this 

stage, the areas where severe wildfires can develop owing to the fuel cover and other features of the 

terrain are detected. This can be done with expert-based classification of fuel cover or via empirical 

models. 

3. Hazard mapping – wildfire hazard is the spatial distribution of the areas where a severe wildfire is likely 

to occur. This can be done merging the outputs of the two previous steps. 

In this short abstract, the results obtained for Steps 1-2-3 are described.  

 

 

1 This designation is without prejudice to positions on status, and is in line with UNSCR 1244 and the ICJ Opinion on the 

Kosovo declaration of independence. 
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2. Materials and Methods 

2.1. Study Area 

The considered countries are the following: Italy, Slovenia, Croatia, Western Balkans (Albania, Bosnia and 

Herzegovina, North Macedonia, Montenegro, Kosovo* and Serbia), Greece, Cyprus, Bulgaria, and Turkey. 

They constitute a vast area (more than 1,600,000 km2) characterized by a high number of biogeographical 

regions: Mediterranean, Continental, Alpine, Anatolian, Pannonian, and Black Sea biogeographical region 

(European Environment Agency, 2002). 

2.2. Methodology 

The proposed methodology for susceptibility mapping is based on a ML model (Trucchia et al., 2022), structured 

as a classification task. It uses a Random Forest Classifier (RF) as an algorithm, to find a functional relation 

between the dependent variable (the label, that is, wildfire occurrences) and the independent variables (that is, 

the predisposing factors). As per the predisposing factors, geographic data (elevation, slope, aspect, land 

cover/fuel cover), climatic data (Köppen-Geiger climate classes, mean precipitation, mean temperature) and 

anthropogenic data (distance from settlements and crops) are considered. The input layers are summarised in 

Table 3. The main data source used for computing vegetation cover variables is CORINE Land Cover 2018 

(CLC2018). The obtained raster, containing the CORINE code for the pixels, then has been processed to obtain 

the neighbouring vegetation variables, which express the vegetation continuity over the analysed landscape. 

Those extra variables are used to associate with any pixel information on the surrounding vegetation. This is 

useful to identify homogeneity in vegetation, or to spot the interface between two main vegetation covers. For 

any pixel, a Moore neighbourhood of order 2 (the 24 surrounding pixels) has been evaluated (see Figure 1). The 

frequency of appearance of the several vegetation types has been computed. For instance, in case of a pixel is 

totally surrounded by CLC2018 code “311”, that is, broadleaves, the variable “neighbouring_311” will be set 

to 1 while all the other "neighbouring_XXX" variables will be set to 0. 

 

Figure 1- A representation of a Moore Neighbourhood and the obtained “neighbourhood percentages” of vegetation 

classes (vegetation continuity) is portrayed. Any other neighbour vegetation type not represented in the image is set to 

0%. 

As per the observed data, the EFFIS database of 10,118 burned polygons (more than 2,922,500 burned hectares), 

retrieved from 2008 to 2019 is considered. 

All inputs and outputs are rescaled to the working resolution of 500m. 

For any of the considered countries, 10% of their burned pixels is retrieved and their predisposing factors 

collected, as well as an equal number of non-burned pixels with their geoclimatic and anthropogenic factors. 

This allowed building a balanced dataset. The contribution of each country is merged in the total dataset. Such 

database was split between the training ones (75 percent of the entries) and the test ones (the remaining 25% of 

the database). The RF model has been trained on the training dataset and evaluated over the test pixel, to 

compute performance indicators. In this work, the Area under the ROC Curve (AUC) and the Mean Square 

Error (MSE) are considered and reported in Table 4. 

The input features then are ranked by their relevance using the measure given by the Gini impurity to spot the 

main drivers of wildfire occurrence in the study area. 
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While the susceptibility layer raw values ranging from 0 to 1 have been used to compute the performance 

indicators, the values have been also aggregated into percentile classes (see Figure 2). 

In order to have a layer accounting for wildfire intensity, the CLC2018 land cover has been processed 

aggregating the CLC2018 classes into four different intensity classes, as reported in Table 1. 

Having for every pixel of the study area a class for potential intensity and a class for wildfire susceptibility, a 

simple expert-based contingency matrix for hazard assessment has been developed. Such matrix is reported in 

Table 2. 

Table 1- Fire behaviour / fire intensity classification. Thanks to this classification a land cover map can be converted 

to a fire intensity map, to be used as input for the hazard mapping. 

Intensity classes Description  Vegetation cover 

1 Surface fire – low intensity crops, grasslands 

2 Surface fire – medium intensity broadleaves, agroforest 

3 Surface fire – high intensity  Sclerophyllus, shrubs 

4 Crown fires – very high intensity  Conifers, mixed forest 

Table 2- The contingency matrix for the Hazard is portrayed. It combines the input classes of susceptibility (rows) and 

intensity (columns). Every entry of the matrix is the hazard level (from one to six: very low, low, medium, high, very 

high, extreme hazard) related to a specific combination of susceptibility and intensity levels.  

Susceptibility / Fire 

Intensity 

Low 

Intensity 

Medium 

Int. 
High Int. 

Very High 

Int. 

Low Susceptibility 1 2 3 4 

Medium Susc. 2 3 4 5 

High Susc. 3 4 5 6 

 

3. Results  

The first results for the susceptibility mapping of the study area are here listed. In Figure 2, the susceptibility 

distribution is portrayed after aggregating via percentile classes. In Figure 3, the Hazard Map for the reported 

area is portrayed. 

The performance indicators are resumed in Table 4, with promising and consistent results for the AUC score.  

Interesting insights are also given by the ranking of the predisposing factors in Table 5: the importance of 

vegetation continuity when compared to single pixel vegetation is an evident result of the analysis, with climatic 

and topographic classes which cannot be neglected for a good classification of the study area. This is in line 

with the more consolidated results from the recent work at the national scale in Italy (Trucchia et al., 2022). 
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Figure 2: Susceptibility map of the study area, coloured by percentiles: 0-25% (low susceptibility), 25-75% (medium 

susceptibility), 75-100% (high susceptibility). 

 

Figure 3: Wildfire Hazard map of the study area, coloured by the hazard classes of Table 2, taking as inputs the 

susceptibility classes (Figure 2) and the fire intensity category (Table 1)  

 

4. Discussion and Conclusions 

Promising results showing the most wildfire prone areas achieved through ML in step 1 supported the work in 

step 2 and 3 of the proposed approach. The susceptibility map produced at this stage of the implementation 

evidenced the importance of vegetation continuity in susceptibility assessment. At the scale of the presented 

analysis of course climatic information is a good asset for discriminating between different species of vegetation 

that belong to the same CORINE class. On the other hand, vegetation continuity covers at least two roles: firstly, 

high flammability fuels continuity is the main responsible of EWEs; secondly, continuity of native broadleaved 

forests may limit the propagation of EWEs. The adopted strategy for fire behaviour/intensity mapping and 

Hazard mapping are an example of how to make use of open data and informed decisions to perform hazard 

mapping at the supernational level. There exist of course plenty of different modelling choices, but the Authors 

tried to stick to the most straightforward one to highlight the solidity of the proposed framework. For instance, 

a modelling approach relying to worst-case scenarios for wind and moisture conditions could have been 

employed for intensity mapping (Trucchia et al. 2022 b). These preliminary results open the right path to 
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restoration and adaptation strategies, fostering the objectives of EU Biodiversity Strategy for 2030. This initial 

susceptibility mapping is currently under refinement by implementing ad-hoc spatial validation procedures, and 

a more thorough factor importance analysis, with a special focus on the impact of the different vegetation types. 

Table 3- Input data for the susceptibility mapping 

Input data Source Description 

CORINE land cover  Copernicus2 Land cover raster file of the Corine 

2018 at 100 m resolution 

Copernicus tree cover density (TCD) Copernicus3 Density of the forestry areas at 

European level at100 m resolution 

Digital Elevation Model (DEM) JAXA’s Global ALOS 3D World 

(Takaku et al. 2020) 

Raster file related to the elevation in 

meter for the study area 

Köppen-Geiger - climate  Open data repository  

(Beck et al. 2018) 

Raster layer of the Köppen-Geiger 

climate classification at 1-km 

resolution  

Mean Precipitation ERA5 data (ECMWF reanalysis) of 

the 1991-2020 time window from 

Climate Change Knowledge Portal 

(CCKP) of World Bank Group 4 

 

Average of yearly accumulated 

precipitation [mm] 

 

Mean Temperature  Average mean temperature [°C] 

 

Burned areas EFFIS5 Historical burned areas retrieved from 

EFFIS (data ranging from 2008 to 

2019)  

 

Table 4- Performance indicators of the training dataset for the susceptibility ML model. 

AUC MSE 

0.77 0.192 

 

Table 5- Importance ranking of the input factor of the ML model. Importance of factors belonging to same category 

have been summed up. 

Predisposing Factor (feature) Gini based Importance 

Climate variables 0.279 

Vegetation continuity (sum of all Gini importances) 0.265 

Topography 0.235 

Anthropic 0.141 

Tree Cover Density 0.045 

Vegetation ( value for single pixel) 0.03 
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