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Abstract 

Coupled atmosphere/fire models are recognized as an efficient and representative way to simulate wildland fire behavior 

at geographical-to-meteorological scales by representing the two-way interactions between the fire front propagation 

and the surrounding atmosphere. These coupled models rely on a rate-of-spread (ROS) parameterization to represent the 

fire front propagation speed as a parametric function of environmental factors characterizing biomass fuel properties 

and moisture content, near-surface wind conditions and terrain slope. In actual wildland fires, these input parameters are 

only partially known and induce significant uncertainties in the coupled model predictions. To estimate the envelope of 

plausible wildland fire behavior, we aim at designing a perturbed-physics ensemble prediction capability based on a 

coupled atmosphere/fire model. To make the approach feasible, it is essential to identify the relevant subset of parameters 

to perturb to generate an ensemble of fire front positions and shapes. In the present study, we carry out a global sensitivity 

analysis based on Sobol’ indices to rank the environmental factors by order of influence on the Balbi’s ROS 

parameterization applied to typical conditions for grass fire experiments. Results show, for the given experimental 

conditions, the predominance of the near-surface wind speed on the ROS variability, followed by the leaf area index 

𝐿𝐴𝐼, the ignition temperature 𝑇𝑖 , the dead fuel moisture content 𝑀𝑑, the dead fuel particle mass density ρ𝑑, and the fuel 

layer height 𝑒. Results also show that the sensitivity of each fuel parameter to the ROS is not constant with respect to 

the near-surface wind speed, and that the most influential input parameters differ between the head and the back of a 

fire. This indicates the importance of exploring the spatial and temporal dependencies of coupled model sensitivities in 

future work. The subset of input parameters already identified as influential allows to reduce the dimension of the 

uncertain space over which to analyze the coupled model response, and thereby the perturbed-physics ensemble size. 

This is a key aspect to extend the global sensitivity analysis to the coupled model framework. While the present 

sensitivity analysis is limited to experimental grass fire conditions, this approach could be easily extended to more 

wildland fire configurations - to analyze to what extend the sensitivity analysis results obtained here are applicable to 

different biomass fuels. 

 

 

1. Introduction 

Coupled atmosphere/fire models (Kochanski et al. 2013; Filippi et al. 2018; Costes et al. 2021) provide an 

efficient but representative way to simulate wildland fire behavior at landscape-to-meteorological scales. They 

predict the propagation of the fire front at the land surface, the dynamics of the fire plume, and their mutual 

interactions. These two-way interactions can modify the near-surface wind and enhance the fire front 

propagation during a wildland fire. The fire model requires from the atmospheric model the near-surface wind 

at a given height to evaluate the rate of spread (ROS) and propagate the fire front. It also provides the surface 

heat fluxes as surface boundary conditions to the atmospheric model. Both ROS (Rothermel 1972; Balbi et al. 

2009) and surface heat fluxes are evaluated through parameterizations, which require as inputs a large number 

of environmental factors related to biomass fuel, near-surface wind and terrain slope. These input parameters 

are partially known (Jimenez et al. 2008) and thereby introduce uncertainties in the coupled simulations. They 

also have their own intrinsic variability. For these reasons, it is necessary to adopt a stochastic viewpoint, i.e., to 

https://doi.org/10.14195/978-989-26-2298-9_39


Advances in Forest Fire Research 2022 - D. X. Viegas & L.M. Ribeiro (Ed.) 

Chapter 1 - Decision Support Systems and Tools 

https://doi.org/10.14195/978-989-26-2298-9_39  Advances in Forest Fire Research 2022 – Page 241 
 

run ensembles of the coupled atmosphere/fire model to represent the range of possible wildland fire behavior 

over a given time window (Costes et al. 2021). 

To limit the computational cost of ensemble simulations while obtaining a physically and spatially-consistent 

ensemble, an appropriate experimental design is essential. The main issue addressed in this work is to identify 

a subset of input parameters that contributes most to the ROS variability along the fire front, and thus on the 

fire front propagation through variance-based global sensitivity analysis (Wilks 2011). The influential input 

parameters will be good candidates to perturb to build a perturbed-physics ensemble that is representative of 

fire front uncertainties in coupled atmosphere/fire modeling. 

 

2. Global Sensitivity Analysis Method 

2.1. Principles 

The objective of sensitivity analysis is to quantify how uncertainties in each input parameter influence the output 

variability in a given model. This is useful to spot the most influential parameters on a given model response 

(factor prioritization), and to constrain irrelevant parameters to an arbitrary value (factor fixing) (Wilks 2011). 

There are two main types of sensitivity analysis methods. On the one hand, local methods are centered around 

one point in the parameter space, and, for each parameter, the impact of small parameter perturbations on the 

model output is calculated. They have some limitations if the model response is subject to nonlinearity since 

the local output variability may not be representative of the model response for all possible values of the input 

parameters. On the other hand, in the global methods, the entire parameter space is considered and the model 

response is analyzed in a multi-query framework, meaning that multiple model evaluations of simultaneously-

modified input parameters are performed and that the induced model variability provides a measure of the 

parameter influence on the model output. Global methods are known to be very efficient, even for a nonlinear 

and non-monotonic model, where interactions between input parameters can occur. Still, their results largely 

depend on the parameter space boundaries and sampling. 

2.2. Sobol’ Sensitivity Indices 

In the present study, we consider a global sensitivity analysis method based on variance decomposition (the 

model output variance is used as the measure of the input parameter influence on the overall model output 

variability) to estimate Sobol’ sensitivity indices (Sobol 1990; Saltelli et al. 2008). 

 

The model output 𝑌 is a function of 𝑑 independent and uncertain input parameters, i.e., 𝑌  =  ℳ(𝑋1, … , 𝑋𝑑), 
where 𝑋𝑖 is the ith parameter that is considered as a random variable, 𝑿 = (𝑋1, … , 𝑋𝑑) is a random vector of 

dimension 𝑑, and ℳ is the model operator. By using Hoeffding’s decomposition theorem, the output variance 

𝑉 = 𝑉(𝑌) can be written as 

V = ∑ 𝑉𝑖

𝑑

𝑖 = 1

+ ∑ 𝑉𝑖𝑗
1≤𝑖<𝑗≤𝑑

+⋯+ V1…d, 

where 𝑉𝑖 is the output variance only due to parameter 𝑖, 𝑉𝑖𝑗 is the output variance due to the pair of parameters 

𝑖 and 𝑗, and 𝑉1…𝑑 is the output variance due to the 𝑑 parameters. Using these notations, Sobol’ first-order index 

for the ith parameter 𝑋𝑖 (Sobol 1990) is defined as 

𝑆𝑖 =
𝑉𝑖
𝑉
. 

𝑆𝑖 varies between 0 and 1, and represents the proportion of the model output variance due to the ith parameter 

(if 𝑆𝑖 = 1, this means that 100% of the model output variance is explained by the ith parameter alone). By 

analogy, higher-order indices represent the proportion of the model output variance due to a set of parameters. 

The full contribution of the ith parameter (including interaction effects with other parameters) can be estimated 

using total-order indices 𝑆𝑖
𝑇 (Saltelli et al. 2008): 

𝑆𝑖
𝑇 = 𝑆𝑖 +∑𝑆𝑖𝑗

𝑑

𝑗>𝑖

+⋯+ 𝑆1,…,𝑑 . 
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The first-order index 𝑆𝑖 represents the main effect of the ith parameter 𝑋𝑖 that is used in factor privatization, and 

the total-order index 𝑆𝑖
𝑇 represents the total effect of the parameter that is used in factor fixing. The difference 

between the two indices represents to which extent the parameter effects on the model response comes from an 

interaction with the other parameters (if the total-order index for a given parameter is equal to its first-order 

index, this implies that there are no interaction effects for this parameter). 

 

3. Sensitivity Analysis Application to Rate-Of-Spread (ROS) Parameterization 

The model due to Rothermel (1972) is the most well-known ROS parameterization. Its formulation relies on the 

energy conservation principle and provides a ROS value only at the head of the fire front (i.e., in the upwind 

direction). In practice, Rothermel’s formulation is combined with geometrical relationships to evaluate the ROS 

all along the fire front. This is the main difference with Balbi’s parameterization (Balbi et al. 2009) that directly 

provides a ROS value that varies all along the fire front, even if the fuel is homogeneous. Balbi’s formulation 

is based on mass, momentum and energy conservation, but still provides an analytical formulation for the ROS 

through flame geometry simplifications. 

In this study, we consider Balbi’s ROS parameterization adapted for landscape-scale wildland fires (Santoni et 

al. 2011) and already implemented in the Meso-NH/BLAZE coupled model. It was, for instance, used for the 

coupled model evaluation against the FireFlux I grass experimental data (Costes et al. 2021). The change made 

by Santoni et al. (2011) compared to Balbi et al. (2009) is the consideration of the different properties of live 

and dead fuels, and their impacts on the ROS. Following previous work by Costes et al. (2021), we consider 

here the conditions of a grass fire experiment, without slope, to carry out the sensitivity analysis. The slope 

parameter is therefore not among the perturbed input parameters. 

3.1. Sobol’-Saltelli Estimation Approach and Experimental Design 

We adopt the well-known Saltelli’s approach (Saltelli et al. 2008) to estimate first- and total-order Sobol’ indices 

(altogether 2 × 𝑑 indices, where 𝑑 is the number of uncertain input parameters). This approach corresponds to 

a Monte Carlo estimation of the Sobol’ indices at a total cost of 𝑁 × (𝑑 + 2) ROS evaluations (where 𝑁 is the 

ensemble size), and thereby provides a confidence interval for the resulting Sobol’ indices estimates. 

In this study, the uncertain space is made by all the input parameters of Balbi’s ROS parameterization (fifteen 

parameters including the near-surface wind speed 𝑈0, Table 1). This space is sampled by 𝑁 points using Sobol’ 

low-discrepancy sequence. This is a quasi-random Monte Carlo method, where the generated sequence has 

many interesting properties: i) the sequence has a low discrepancy (i.e., there is a more homogeneous coverage 

of the parameter space than in a classical Monte Carlo method for a limited number of samples 𝑁), and ii) the 

sequence is coherent (the 𝑁 first points of a sequence with (𝑁 + 1) points are the same as for a sequence with 

𝑁 points, implying that, if more samples must be generated, it is not necessary to recompute the previous points 

and that a large model dataset can be generated in an incremental way). It is worth noting that we consider here 

a large number of samples 𝑁 to guarantee convergence of the Sobol’ indices (𝑁 = 20,000). This is feasible here 

since the ROS parameterization can be evaluated at a low cost (the sampling strategy will have to be adapted 

when switching to a coupled atmosphere/fire model, which is very demanding in terms of computing resources). 

Table 1 provides a detailed description of the fifteen input parameters. Without further information, they are 

perturbed according to a uniform statistical distribution, which is characterized by a variation interval. The 

center of this interval corresponds to a so-called standard value, which corresponds to a tall grass fuel typical 

of the FireFlux I experiment that was simulated in Costes et al. (2021) using the Meso-NH/BLAZE coupled 

model configured with the Balbi’s ROS parameterization. We consider here a large variation interval to study 

how the ROS changes for a wide set of environmental conditions, and to identify which are the most influential 

input parameters that could then be used to generate ensemble coupled model simulations and study the coupled 

model response in a variety of situations. 

3.2. Results 

3.2.1.  Predominant wind factor 

Figure 1 shows the first- and total-order sensitivity indices for all parameters presented in Table 1 (𝑑 = 15). For 

example, the first-order index for the dead fuel particle density ρ𝑑 is equal to 0.05 (circle symbol), and the 
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associated total-order index is equal to 0.06 (square gray symbol). This means that ρ𝑑 is responsible for 6% of 

the ROS variability within the ensemble (5% without accounting for the interaction with the other parameters). 

Table 1- Input parameters (Balbi’s ROS parameterization) perturbed in the sensitivity analysis 

Name Symbol Unit Standard 

value 

Lower 

bound 

Upper 

bound 

Coefficient 

of variation 

Fuel calorific capacity  𝑐𝑝 J kg−1 K−1 1,912 1,720.8 2,103.2 6% 

Fuel layer height 𝑒 m 1.5 1.0 2.0 19% 

Leaf area index 𝐿𝐴𝐼 — 4 2 6 29% 

Dead fuel moisture content 𝑀𝑑 % 10 5 15 29% 

Living fuel moisture content 𝑀𝑙 % 80 60 100 14% 

Dead fuel particle surface-to-volume ratio 𝑠𝑑 m−1 5,000 4,250 5,750 9% 

Living fuel particle surface-to-volume ratio 𝑠𝑙 m−1 5,000 4,250 5,750 9% 

Ignition temperature 𝑇𝑖  K 590 490 690 10% 

Near-surface wind speed 𝑈0 m s−1 4 0 8 58% 

Combustion enthalpy ΔH MJ kg−1 15.43 14.66 16.20 3% 

Air density ρ𝑎 kg m−3 1.2 1.0 1.4 10% 

Dead fuel particle mass density ρ𝑑 kg m−3 400 300 500 14% 

Living fuel particle mass density ρ𝑙 kg m−3 400 300 500 14% 

Dead fuel surface loading σ𝑑 kg m−2 1 0.8 1.2 12% 

Living fuel surface loading σ𝑙  kg m−2 0.1 0.05 0.15 29% 

 

 

Figure 1- Sobol’ indices quantifying the sensitivity between the 15 perturbed parameters and the 

ROS as evaluated by Balbi’s parameterization at the fire front head. Circles represent first-order 

indices. Squares represent total-order indices. Vertical bars represent estimation uncertainties. 

From Figure 1, the most influential parameters on the Balbi’s ROS parameterization can be identified. The near-

surface wind speed 𝑈0 is the predominant factor by explaining by itself 48% of the ROS variability (57% in 

total). The difference between the first- and total-order indices is important for 𝑈0, implying that there are 

important interaction effects between the wind factor and the other parameters. Other influential parameters are 

by order of importance the leaf area index 𝐿𝐴𝐼, the ignition temperature 𝑇𝑖, the dead fuel moisture content  
𝑀𝑑 , and the dead fuel particle mass density ρ𝑑 for which the first-order Sobol’ index is equal to 16%, 11%, 5% 

and 5%, respectively. 

3.2.2.  Sensitivity analysis by near-surface wind speed level 

Previous results correspond to the ROS at the head of the fire front. We now apply the same sensitivity analysis 

method when the near-surface wind speed 𝑈0 is equal to 0 m s−1, in order to represent the situation of a back 

fire (fourteen parameters are perturbed). The most influential parameters are by order of importance the fuel 
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layer height 𝑒, the ignition temperature 𝑇𝑖, the combustion enthalpy ∆H, the dead fuel moisture content 𝑀𝑑 and 

the dead fuel surface loading σ𝑑 for which the first-order Sobol’ index is equal to 38%, 21%, 9%, 8% and 8%, 

respectively. This shows that 𝑇𝑖 and 𝑀𝑑 are influential parameters at the head and at the back of a fire.  

This results also indicates that the sensitivity of the ROS to the different fuel parameters is variable according 

to the value of the near-surface wind speed 𝑈0. This is consistent with the difference previously-observed 

between the first- and total-order Sobol’ indices for the near-surface wind speed 𝑈0  indicating significant 

interaction effects. Since the wind velocity seen by the fire front changes all along the fire front (the wind speed 

used in the ROS parameterization corresponds to the normal component of the wind velocity to the fire front), 

the order of importance of the input parameters may change along the fire front. To further analyze this 

dependency, the near-surface wind speed 𝑈0 is removed from the perturbed parameters and Sobol’ indices are 

estimated for different wind levels varying between 0 and 20 m s−1 (the mean ROS within the ensemble changes 

from 0.39 to 3.82 m s-1). We focus the sensitivity analysis on the eight most influential parameters identified in 

the previous steps (the near-surface wind speed 𝑈0 is no longer included in the perturbed parameters to generate 

the 𝑁 samples). Figure 2 presents Sobol’ first-order indices obtained for the different wind levels. Results 

confirm that the order of importance of the input parameters largely depends on the wind level. Without wind, 

more than 60% of the ROS variability is explained by two parameters, the fuel layer height 𝑒 and the ignition 

temperature 𝑇𝑖. When the wind speed increases, for instance for 𝑈0 = 5 m s−1, the fuel layer height 𝑒 is far less 

important (4%), and the leaf area index 𝐿𝐴𝐼 becomes very influential (41%). This is consistent with Balbi’s 

ROS parameterization. First, the parameter 𝑒 is only involved in the radiation submodel to estimate the radiant 

panel size, and radiation is assumed to be independent of the wind speed. Second, as part of the definition of 

the upward velocity of the combustion gases, the parameter 𝐿𝐴𝐼 is involved in the tilt angle estimation that 

depends on the wind speed. This study indicates that the most influential parameters that are relevant to perturb 

to generate an ensemble depend on the portion of the fire front that is considered (head, flanks or back). 

 

Figure 2- First-order Sobol’ indices relating the ROS and 8 perturbed inputs, which are obtained for different levels 

of the near-surface wind speed 𝑼𝟎. One input parameter corresponds to one color. Shaded intervals represent 

estimation uncertainties. 

 

4. Conclusions 

This study identifies the most influential parameters involved in Balbi’s ROS parameterization through Sobol’-

Saltelli sensitivity analysis approach to estimate the first- and total-order Sobol’ indices. The most influential 
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parameter is the near-surface wind speed 𝑈0. The influence of the other parameters depends on the value of the 

near-surface wind speed 𝑈0, but overall, the five most influential fuel parameters are the leaf area index 𝐿𝐴𝐼, 
the ignition temperature 𝑇𝑖, the fuel layer height 𝑒, the dead fuel particle mass density ρ𝑑, and the dead fuel 

moisture content 𝑀𝑑. The next step is to extend this sensitivity analysis approach to a coupled atmosphere/fire 

model to represent the spatio-temporal impact of input parameters on the wildland fire behavior. This will 

provide access to the fire-induced wind and to the temporal and spatial variability of the near-surface wind 

speed, which in turn has an influence on the spatial and temporal variability of the fire front. This will also be 

helpful to define a protocol for generating a perturbed-physics ensemble and estimating the range of plausible 

wildland fire behavior for a given event. For this purpose, the sensitivity analysis approach will include different 

ROS parameterizations and different environmental conditions to go beyond the conditions of a flat grass fire 

experiment, and thus have sensitivity analysis results that cover a wider range of wildland fire conditions. 
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