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Abstract 

Fire authorities have started widely using operational fire simulations for effective wildfire management. These fire 

simulation outputs, when aggregated on a massive scale, create an opportunity to apply the evolving data-driven 

approach to closely estimate wildfire risks even without running computationally expensive simulations. We explored 

this opportunity in one of our previous works where we proposed a probability-based risk metric that gives a series of 

probability values for fire starting at a location under a given weather condition, to fall into different risk categories. The 

metric considered each fire start location as a unique entity, which could face scalability issues when the metric is used 

for a larger geographic area and make the metric hugely compute-intensive. As spatial clusters are significantly fewer 

than fire start locations, such spatial clusters may leverage the metric by reducing the computational requirements. In 

this work, we investigate if the spatial clustering of fire start locations based on historical fire areas can address the 

scalability issue without significantly compromising the accuracy of the metric.  

 

 

1. Introduction 

With an increased understanding of phenomena and advancements in computing technologies and observational 

sciences, natural disasters can be modeled and studied with greater detail (Razavi et al., 2012, Kaizer et al., 

2015). Several wildfire models and tools have been developed that can estimate the wildfire behaviors and 

propagation accurately. Consequently, fire authorities have started widely using operational fire simulations for 

making better-informed decisions for wildfire management. These fire simulations when aggregated on a 

massive scale have created a unique opportunity to apply the evolving data-driven approach to closely estimate 

wildfire risks even without running a single computationally expensive simulation amidst the process being 

highly compute-intensive otherwise. 

In one of our previous works (KC et al., 2022), we validated the application of the data-driven approach to 

facilitate rapid wildfire risk using a Bayesian probabilistic model. The wildfire risk metric detailed in the study 

gave a series of probability values for fire starting at a location under a given weather condition to fall into 

different risk categories. Despite the application of the model being computationally inexpensive, building the 

inference model was tedious and comparatively compute-intensive as each possible fire start location was 

considered a unique entity and the probability values conditioned on fire start location had to be calculated for 

each location. Such a consideration can face serious scalability issues when the geographical area undertaken 

for wildfire risk estimation is large and has a significantly large number of possible fire start locations. As such, 

in this work, we investigate if the spatial clustering based on historical data (the data used to build the inference 

model) could address this scalability issue of the risk metric without significantly compromising the accuracy 

of the metric. The concept of spatial clusters was envisioned to leverage the risk metric as the number of spatial 

clusters is significantly lower than the number of possible fire start locations in a geographical area, which could 

further reduce the overall computational requirements of the metric. 
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2. Methods and Procedures 

2.1. Study Area 

We chose Tasmania as the study area to validate the proposed idea of characterizing geographical regions into 

different risk zones using spatial clustering. The choice was made for several reasons - frequent occurrences of 

wildfires in the region, the prevalence of readily available high-quality land data sets for the region usable in 

operational wildfire simulation tools, and a well-studied and systematic grid configuration of fire start locations 

in the region (Service, 2019; KC et al., 2020a). Tasmania Fire Service (TFS) has maintained a grid configuration 

of 68,048 possible fire start locations at an interval of 1 km irrespective of land. Any start locations falling on 

the water bodies are shifted to the nearest land location. 

2.2. Wildfire Simulation Tool – Spark 

We used the Spark framework (Miller et al., 2015) to run wildfire simulations. Spark offers a flexible platform 

to simulate the progression of wildfires and their behaviors in different vegetation types. Each wildfire 

simulation in Spark requires input data sets for fire behavior models, maps of land classification, fuel load, 

topographical data sets, and weather data to produce output metrics such as total area burnt by fire, the intensity 

of the fire, and the number of urban cells burnt. All the calculations in Spark are parallelized using the OpenCL 

framework. All the simulations and their outputs used in this study are available in (KC et al., 2021). 

2.3. Fire simulations inputs 

We chose four weather inputs - temperature, relative humidity, wind speed, and wind direction for this study 

following the experimental setup of one of our previous works (KC et al., 2020a, KC et al., 2020b). The ranges 

for these inputs considered for spatial clustering for risk zones are listed in Table 1. Five equally spaced discrete 

values of each weather input (except wind direction) were considered along with four distinct directions (east, 

west, north, and south) for wind directions. Wildfires grow aggressively under weather conditions characterized 

by high values of wind speed, temperature, and low values of relative humidity when the wind is pushing the 

fire away from the water bodies. All other static inputs to fire simulations were used as per the configurations 

and records maintained by TFS and the Tasmanian Government (Tasmania, 2021). All fire simulations were 

run for five hours, and the cumulative areas burnt by fire in the period were reported as a simulation output. 

Table 1 - Range and discretization of the factors for fire weather 

Parameters Range Labels with Interval 

Air Temperature [10, 40] Low (L) [10,18] 

Medium (M)(18, 33) 

High (H) [33, 40] 

Relative Humidity [10, 90] Low (L) [70,90] 

Medium (M) (30, 70) 

High (H) [10, 30] 

Wind Speed [10,60] Low (L) [10,23] 

Medium (M) (23,48) 

High (H) [48, 60] 

2.4. Wildfire risk zones assignment using spatial clustering 

We employed spatial clustering enabled by k-means clustering (Likas et al., 2003) based on the values of area 

burnt by fires starting at the location to assign a risk zone to the fire start location. It should be noted that for 

any fire start location closer to any water bodies, the information on the fire burnt areas should be interpreted 

carefully. For example, under a given weather condition, a fire starting at a location with a water body to its east 

with the wind driving the fire towards the east ceases immediately giving an unburnt landscape, while any fire 

starting at the same location with the wind driving the fire in other directions not east, may burn a significant 

area of land. To overcome such circumstances, we adapted the clustering mechanisms based on the mean and 

median values of fire burnt areas for all locations. The characteristics of the clusters obtained from clustering 

mechanisms were interpreted to label all fire start locations in Tasmania under three risk zones - low, medium, 

and high. 
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3. Experimental setting 

3.1. Computing environment for wildfire simulations 

All the wildfire simulations used for this study were run using the cloud-based frameworks as designed 

in (KC et al., 2020) over the cloud infrastructure of Nectar Cloud (Nectar, 2018) and Google Cloud 

(Google, 2020). Several types of Cloud instances were used as this study does not include any time-

related evaluation metrics. 

3.2. Evaluation metrics 

We compared the accuracy of the proposed clusters-based risk zone characterization against that of the baseline 

McArthur Forest Fire Danger Index (FFDI) (McArthur, 1967) and our previously proposed risk metric. We also 

compared the proportions of underfits (predicted area less than the true values) and overfits (predicted area more 

than the true values). The comparison was done for three and two risk zones as initially explained in our previous 

work (KC et al., 2022). 

 

4. Results and Discussion 

4.1. Risk zones characterization using spatial clustering 

Figure 1 shows all possible fire start locations in Tasmania characterized as low, medium, and high-risk areas as 

given by the spatial clustering. Out of 68,048 fire start locations, about 66 % of the locations were characterized 

as low-risk zones while the compositions for the medium and the high-risk zone stood at about 24 % and 10 % 

respectively. Most of the fire start locations closer to water bodies were labeled as low wildfire risk zones while 

the fire-starting inwards were labeled as high-risk zones. The high-risk zone had a range of average fire area 

between 3,900 and 10,400 hectares while the low-risk zone had the same range between 2 and 1,700 hectares. 

4.2. Comparison against the FFDI and the risk metric 

Table 2 shows the comparison of the cluster-based risk metric against the baseline FFDI and the previous 

wildfire risk metric for three and two risk categories. The accuracy of the cluster-based metric for three distinct 

risk categories stood at about 70 % while the same for the FFDI and the previous metric stood at about 55 % 

and 75 % respectively. Similarly, for two distinct risk categories, the numbers stood at about 85 %, 88 %, and 

77 % for the cluster based, FFDI, and previous metric respectively. As expected, the accuracy of the cluster-

based risk metric is less than that of the previous risk metric. However, the accuracy is still better than that of 

the McArthur FFDI and is not considerably far from the accuracy of the previous metric. The cluster-based risk 

metric had more proportion of underfits than the previous metric which could be due to a wider range of fire 

areas for the low-risk zone compared to the original range of low-risk zone in our previous metric. Conversely, 

the overfit proportion with the cluster-based metric is marginally less than in the previous metric, which could 

minimize the overestimation of resources during wildfire management. 

In this investigative study, we were able to cut down the location-specific probability calculations from 68,048 

to a clustering mechanism and a significantly fewer number of 3 (clusters). Such a provision in the risk metric 

could theoretically reduce the computational requirements of the calculations of location-specific probability 

values by a factor in thousands. The most important fact in the findings is that the change in the accuracy of the 

metric is a mere 8 % and 3 % for three and two distinct risk categories respectively. A comprise of less than 5 

% in accuracy at such a scale for a significant reduction in the computational requirements outlines the spatial 

clustering as discussed in this paper to be a good alternative for fire start location risk characterization in the 

data-driven probability-based wildfire risk metric. 

 

 

 

 

 

https://doi.org/10.14195/978-989-26-2298-9_45


Advances in Forest Fire Research 2022 - D. X. Viegas & L.M. Ribeiro (Ed.) 

Chapter 1 - Decision Support Systems and Tools 

https://doi.org/10.14195/978-989-26-2298-9_45  Advances in Forest Fire Research 2022 – Page 292 
 

Table 2 - Performance comparison against the McArthur FFDI 

 
Evaluation 
metrics 

Three Categories Two Categories 

Cluster-
based 

Previous 
metric 

McArthur 
FFDI 

Cluster-
based 

Previous 
metric 

McArthur 
FFDI 

Accuracy 66.81 74.55 51.99 84.87 87.43 76.03 
Underfits 24.9 15.88 38.87 13.31 10.27 13.49 
Overfits 8.2 9.66 9.14 1.81 2.3 13.49 

 

 

Figure 1 - Risk zone characterization of all possible fire start locations in Tasmania. 

 

5. Conclusions and future research 

The ever-evolving data-driven approach can be a computationally efficient alternative to rapidly estimate 

wildfire risks using several inference models. One such model was detailed in one of our previous works to 

build a probability-based risk metric, which was quite accurate in risk estimation. But the metric was subjected 

to scalability issues as each fire start location was considered a unique entity for location-related probability 

calculations. In this brief study, we investigated if spatial clustering could address the scalability issue of the 

metric without significantly compromising the accuracy of the metric. We found that the spatial clusters to 

characterize the risk of each start location could help solve the scalability issues by drastically reducing the 

number of calculations required by a theoretical factor in thousands with a mere compromise of about 5 % in 

accuracy. Such an inexpensive estimation of wildfire risk with a data-driven metric can help fire authorities to 

prioritize resource allocation and make better-informed decisions at various stages of fire emergencies to 
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minimize the possible losses. We expect future works to verify the numbers around the factor by which the 

computational requirements of the probability-based risk metric are poised to get reduced with spatial clustering. 

Similarly, the studies around the influence of the number of spatial clusters on the accuracy of the metric could 

also be studied further. 
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