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Abstract 

Spatial modelling and machine learning are powerful techniques that can be used to identify patterns within data and 

build complex relationships between response and predictor variables. While powerful, many of these techniques are 

computationally intensive and are not designed to fully leverage high performance computing resources, especially when 

used within a geospatial context. To fully leverage system resources, while facilitating various spatial, machine-learning, 

and statistical modelling workflows, we developed a Python-based processing library called raster-tools. The raster-

tools library automates delayed reading and parallel processing using Dask and integrates seamlessly into popular spatial, 

machine learning, and visualisation libraries such as geopandas, rasterio, xarray, scikit-learn, xgboost, pygeos, shapely, 

matplotlib, plotly, folium, and many more. Combined, these open-source libraries provide users with free and powerful 

analytical capabilities that can be used at scale and can dynamically display textual, tabular, spatial and graphical data. 

In this paper, we will provide a brief overview of the raster-tools library and demonstrate how the described open-source 

stack can be used to perform GIS analyses in both a web and desktop environment. 

 

 

1. Introduction 

Our environment is constantly being monitored. Today, satellite and airborne sensors on programs and platforms 

such as MODIS (MODIS, n.d.), Landsat (USGS, n.d.), Sentinel (EOS, n.d.), and NAIP (NAIP, n.d.) are 

acquiring data at spatial, spectral, and temporal resolutions that were, until recently, hard to imagine. Similarly, 

with advancements in drone technology and sensor hardware, the amount of remotely sensed data that is 

constantly being acquired and used to quantify aspects of natural resources is staggering. The recognition that 

large volumes of data are not being fully leveraged to inform decision making has led to an increased awareness 

in the fields of data (Gibert et al, 2018) and decision (Elshawi et al, 2018) science and the potential of what has 

become known as “Big Data” (Markwo et al, 2017). While there is great potential and promise attributed to 

“Big Data”, the practical use of data to drive decision making within the natural resource community has not 

been fully realised (Gibert et al, 2018). 

In large part the discrepancy between the potential and use of “Big Data'' to aid in natural resource decision 

making stems from two primary deficiencies: 1) a lack of analysts and technicians trained in the tenets of data 

science within the natural resources community and 2) software libraries that fully leverage computer resources 

and integrate tabular, geospatial, and machine learning (ML) domains. Within the first deficiency, common 

obstacles to implementation include: a lack of education and skills associated with integrating the various 

mathematical, statistical, ML techniques, computer programming languages, data formats, and the size of the 

data (Gibert et al, 2018). Less understood issues include leveraging data processing results (e.g. modelled 

outputs) for efficient decisions, the impact of applying models to new domains, the propagation of errors, and 

model misspecification. Issues of scale, domain, error, and relevance can have additional meanings within a 

complex natural resource setting. These issues often prevent studies that convert data into pertinent forest and 

fire related information from being used to their potential for planning and management decisions. 
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Within the second identified deficiency (integrated software libraries), geospatial analysis is core to natural 

resource management and planning. To facilitate geospatial analyses, geographic information systems (GISs) 

and remote sensing software such as ESRI’s software suite (ESRI, n.d.), ERDAS (Hexagon, n.d.), ENVI 

(L3Harris, n.d.), IDRISI (Clark Labs, n.d.), QGIS (QGIS Dev. Team, n.d.), GRASS (GRASS Dev. Team, n.d.), 

and Whitebox (Whitebox Geospatial Inc., n.d.) have been developed to support spatial analytics and 

visualisation. However, commercial software platforms are expensive, typically have only a subset of 

commonly used routines, have a proprietary code base, do not necessarily integrate well with other processing 

libraries, and are only partially designed to fully leverage computer hardware, making it challenging to use those 

systems within a Big Data context. Open-source projects such as QGIS, GRASS, and Whitebox address cost 

issues but also tend to be plagued by issues similar to their commercial counterparts and typically are less 

intuitive to use, have stability issues, and often lack documentation. 

These obstacles have led some to develop open-source data processing libraries such as gdal (GDAL 

Contributors., 2022), geopandas (Jordahl et al, 2020), rasterio (Gillies et al, 2013), xarray (Hoyer & Harmon, 

2017), scikit-learn (Pedregosa et al, 2011), xgboost (Chen & Guestrin, 2016), shapely (Gillies, 2007), matplotlib 

(Hunter, 2007), plotly (Plotly Tech. Inc., 2015), and folium (python-visualization, 2020) that build upon 

common processing frameworks such as numpy (Harris et al, 2020), scipy (Virtman et al, 2020), and pandas 

(McKinneyl, 2010). However, these libraries alone do not natively address issues of parallel processing, 

memory management, or excessive use of input and output (Hogland & Anderson, 2017). To address these 

issues, Dask (Dask Dev. Team, 2016) has built a newer processing framework that builds upon the core 

processing frameworks of numpy and pandas that can be leveraged to facilitate and integrate tabular, geospatial, 

and ML analyses through lazy processing and parallelization. Two relatively recent coding projects that have 

successfully leveraged Dask to facilitate lazy processing, parallelization, and geospatial analyses from a vector 

and raster perspective include dask-geopandas (Geopandas Dev. Team, n.d.) and xarray-spatial (Makepath, 

n.d.), respectively. To further address the need for geospatial libraries that fully leverage computer resources 

and integrate tabular, geospatial, and ML analyses we have developed a new open-source project called raster-

tools. 

Our open-source package leverages the extensive data science, data processing and geospatial ecosystems of 

Python to provide a platform for developing data-driven decision making tools. Through the use of Python’s 

Dask library (Dask Dev. Team, 2016), raster-tools allows users to easily scale their workflow from small laptops 

up to servers or high-performance computing (HPC) clusters, while fully utilising available resources. It 

contains a subset of the processing functions offered by ESRI software but can be used to implement many 

others. raster-tools also integrates easily with popular spatial, ML, and visualisation libraries such as geopandas, 

xarray, scikit-learn, xgboost, shapely, matplotlib, jupyter-lab, folium, and more. 

Here, we highlight the use of our raster_tools package, in conjunction with an open-source stack, to inform 

decision making at scale through multiple use cases. Moreover, we demonstrate how this newly developed 

technology can be easily integrated with other spatial and statistical modelling workflows to realise the potential 

of Big Data. Finally we discuss the benefits of using raster-tools to perform geospatial analyses. 

 

2. Methods 

The raster-tools project is roughly based on the Rocky Mountain Research Station (RMRS) Raster Utility 

project (Hogland & Anderson, 2017). While similar in concept, raster-tools furthers the intent of the RMRS 

Raster Utilities project by improving processing efficiencies, increasing the size of datasets that could be 

processed, expanding possible compute platforms, and providing an open-source set of efficient geospatial, 

remote sensing, and ML procedures. The raster-tools package provides the same lazy processing and execution 

functionality as RMRS Raster Utility but can easily scale to larger datasets and hardware configurations, run on 

a wider range of platforms, and directly integrates with Python’s wider ecosystem, making it a significant 

improvement over RMRS Raster Utility project. 

The raster-tools package is built on the open-source python library Dask (Dask Dev. Team, 2016). Dask is a 

general-purpose library that embraces lazy operations and data partitioning for parallel data processing. At its 

core, Dask breaks data into smaller chunks of data, similar to pixel blocks within ESRI’s ArcObjects [34], and 

allows users to apply lazy operations to those data subsets. An operation on the whole dataset is applied as lazy 
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tasks on the constituent chunks and only takes place when requested by the user. In this way, Dask allows for 

extensive, lazy data pipelines to be built. For execution, Dask provides robust task scheduling that can distribute 

per-chunk tasks across available compute resources. This approach to processing automates the parallel aspect 

of Dask procedures and allows for easy scaling from a single CPU core on a small laptop to distributed HPC 

clusters. Moreover, processing is performed “out-of-core”, making it possible to process large datasets that 

exceed available memory by only loading chunks into memory at any given time. When chunks are kept small, 

computation can occur in memory constrained environments, making it feasible to process extremely large 

datasets quickly and efficiently in a parallel fashion. 

To illustrate the benefits of chunking and lazy processing within a geospatial context, we use the raster-tools 

package (Raster-Tools Dev. Team, n.d.) and highlight common and not so common functionality through two 

use-cases. These are 21st century planning for fire resilient landscapes (Hogland et al, 2021) and burn severity 

prediction. These use vector and raster based datasets to demonstrate data acquisition, spatial and ML modelling, 

and visualisation. The rest of the article is separated into Use Case, Discussion, and Conclusion sections that 

describe the use cases, discuss how raster-tools facilitated the analyses within the use cases, and provide 

concluding remarks, respectively. 

 

3. Use Cases. 

3.1. 21st century planning for fire resilient landscapes 

The 21st century planning for fire resilient landscapes use case, uses raster_tools to perform various spatial 

analyses to aid in planning forest treatments and quantify the costs and impact of those treatments at scale across 

a broad landscape. Spatial analyses used in this example include: arithmetic, logical, data format 

transformations, surface distance, surface allocation, and surface traceback, region grouping, and zonal 

summaries. Spatial data outputs created in this example include: multiple raster surfaces that quantify desired 

future conditions (DFCs), actual tonne removal, potential and actual cost, revenue, and profit of treatment 

implementation for 1.2 million ha in north central Oregon, USA at spatial resolution of 30 m. Primary datasets 

used within the use case include basal area per ha (BAH: m2 ha-1), and a most likely classification raster surfaces 

(Hogland et al, 2021), potential operational delineations (Dunn et al, 2020), United States Census Bureau 

Tiger/Line files (USCBl, n.d.), the National Hydrography Dataset (NHD) Flowline and Waterbody line and 

polygon features (NHD, n.d.), and the location of the Malheur Lumber company. All datasets used within the 

analyses are available for download at Hogland, n.d.a and are explained in further detail in (Hogland et al, 

2021).  

We provide a Jupyter notebook (Hogland, n.d.b) with an in-depth, dynamic example of the analyses performed 

within (Hogland et al, 2021) using raster-tools. The notebook is meant as a companion piece with (Hogland et 

al, 2021) and demonstrates everything from installation to final analysis. It is free to download and can be used 

with Google’s Colab for research and educational purposes (Google Research Colab, n.d.). 

Key results from the analyses performed in the notebook include spatial surfaces describing estimated treatment 

cost, revenue, and profit, and the amount of material removed to meet DFCs at 30 m resolution, along with 

summary reports based on POD boundaries and management priority (Figure 1). Moreover, outputs can be 

displayed as an interactive map and saved as a HTML file and further embedded within any website. From start 

to finish the analyses performed within the notebook takes approximately 16 minutes to complete using Colab 

and represent a substantial improvement in both processing time (minutes vs hours) and storage space (no 

intermittent datasets were created) over the delivered cost processing technique described in (Hogland et al, 

2021). 
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Figure 1- Study site location, Desired Future Condition (DFC), Potential Cost, Removals, Potential Treatment Units, 

and summarised tonne removed (blue), cost (orange), revenue (green), and profit (red) derived from the 21st century 

planning notebook. 

3.2. Burn Severity Prediction 

Our second use case was the development of a burn severity classifier similar to (Parks et al, 2018). For this, 

we created a training dataset consisting of 29.4 million burn severity labels and predictor values for the state of 

Montana from 1984–2020. Like (Parks et al, 2018), we used MTBS (Eidenshink et al, 2007) for the severity 

labels, but increased the number of severity classes used. For the predictors, we used 30 m CONUS EDNA 

elevation and derivative products (USGS, 2005) and 4 km CONUS gridMET reanalysis products (Abatzoglou, 

2013). The training dataset was assembled using raster-tools to take MTBS data and pull the corresponding 

collocated data values from the predictor datasets. Using raster-tools allowed us to assemble the training dataset 

efficiently and in parallel in only a few hours on a desktop computer with limited memory. Figure 2 shows 

results for a single fire. 

 

Figure 2- Comparison of MTBS (left) and model predicted (right) burn severity for the 2007 Chippy Creek fire in 

Montana. 
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4. Discussion 

In both of the above use cases, large, high-resolution rasters and vectors were used as input data. Traditional 

methods for handling the processing of such data (e.g. ESRI) requires significant investment in computing 

resources, licensing, and time. With raster-tools, we were able to get meaningful, actionable results quickly 

using relatively small compute platforms. In the first use case, raster-tools allowed us to work with large rasters 

and vectors seamlessly and to carry out a very large number of computations quickly. It eliminated the need to 

write intermediate results to disk and also allowed us to carry out data analysis on the results with Python’s 

wider data ecosystem. 

In the second use case, raster-tools allowed us to pull together and work together with nearly 2000 large, high-

resolution rasters, simultaneously to produce 29.4 million data points. This would not normally be possible 

without large investments in computing power, time, and extensive optimization work. Because raster-tools 

uses Python, we were also able to automate this task so that, in the future, we can apply the same processing 

pipelines to the other parts of the U.S. with only minor changes. 

 

5. Conclusions 

Our raster-tools package is a free and open-source tool for processing geospatial data. It provides the ability to 

build automatically scaling processing pipelines that can be run across compute platforms. We think that it can 

be used as a platform for building data driven applications that produce timely and actionable results at scale. 
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