
Edited by

DOMINGOS XAVIER VIEGAS
LUÍS MÁRIO RIBEIRO

2022



Advances in Forest Fire Research 2022 - D. X. Viegas & L.M. Ribeiro (Ed.) 

Chapter 1 - Decision Support Systems and Tools 

https://doi.org/10.14195/978-989-26-2298-9_56   Advances in Forest Fire Research 2022 – Page 353 
 

Sensitivity of LIDAR Derived Fuel Cells to Fire Modeling at Laboratory 

Scale 

Anthony Marcozzi*1; Jesse Johnson1; Russell Parsons2; Jacob Downs1 

 

1University of Montana. 32 Campus Dr, Missoula, MT 59812, USA, 

{anthony.marcozzi@umconnect.umt.edu, jesse.johnson@mso.umt.edu, jacob.downs@umconnect.umt.edu} 
2 USDA Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory. 5775 Hwy 10 West, 

Missoula, MT 59808, USA, {russell.a.parsons@usda.gov} 

*Corresponding author 

 

Keywords 

CFD, Fire behavior, LIDAR, DAKOTA, Fuel modeling 

 

Abstract 

Computational models of wildfires are an important tool for fire managers and scientists. However, fuel inputs to wildfire 

models can be difficult to represent with sufficient detail to be both computationally efficient and representative of 

observations. Recent advances in fuel mapping with airborne and terrestrial laser scanning (LIDAR) techniques present 

new opportunities to capture variation in fuels within a tree canopy and on a landscape. In this paper, we develop a 

technique for building 3D representations of vegetation from point clouds created by Terrestrial Laser Scans (TLS). Our 

voxel based approach can be extended to represent heterogeneous crown fuels as collections of fuel cells in modern 3D 

Computational Fluid Dynamics wild fire models such as FDS, QUIC-Fire, or FIRETEC. We evaluated the effectiveness 

of our technique at different fuel cell resolutions by using the DAKOTA optimization toolkit to compare simulated fire 

behavior in FDS with observed burn data collected during a series of experiments at the Missoula Fire Sciences 

Laboratory. The primary finding was that within the search space of point cloud derived fuel cells, we find accurate 

descriptions of observed fire behavior with the FDS model. We also find that within our search space, regions of global 

minima are consistent across fuel cells at different resolutions. This finding suggests that while new techniques are 

capable of characterizing fuel models with a high degree of fidelity, high resolution 3D fuel models do not improve 

parity with observed fire behavior in the FDS fire model. The results of this paper offer fire modelers guidelines for 

translating LIDAR data to 3D fire models, and what fuel cell resolution can best capture accurate fire behavior. 

 

 

1. Introduction 

Wildfires are an increasingly visible natural phenomenon across the globe. In the United States, 43,371 

structures were lost due to wildfires from 2016-2019 (National Interagency Fire Center 2019), and the Wildland 

Urban Interface (WUI), the area where houses and vegetation intersect, was the fastest growing land use type 

in the United States from 1990-2015 (Radeloff et al. 2018). Despite the threat to homes in the WUI, wildfires 

have historically been an integral part of North American forest, brush, and grassland ecosystems, and by 

pursuing a policy of wildfire suppression since the early 20th century, land managers have altered fire regimes 

in much of North America (Arno and Brown 1991). In addition to a more complicated landscape from an 

expanded WUI and altered fire regimes from fuel loading, fire managers also have to account for the effects of 

a warming climate on fire conditions. The number of areas with the potential to be adversely affected by 

wildfires has increased in the 21st century. Tools for mitigating the threat of wildfire to fire sensitive areas, such 

as the WUI, have traditionally included a combination of thinning projects and prescribed burns (Arno and 

Brown 1991). Unfortunately, the tools developed to evaluate the efficacy of such projects on a local scale rely 

on limiting assumptions, cannot be generalized across landscapes, and do not account for rapidly changing fire 

regimes due to climate change (Parsons et al. 2018). 

Physics based Computational Fluid Dynamic (CFD) models present a possible solution to these problems by 

providing a mechanism to study fire behavior in heterogeneous vegetation and dynamic fire environment 

conditions (Linn et al. 2020). However, CFD models must be coupled with accurate models of fuel to 

realistically represent fire behavior (Parsons et al. 2011, Atchley et al. 2021). 
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Fortunately, rapid advancements in remote sensing techniques have introduced new methods capable of meeting 

the data requirements of physics based fire models. LIDAR is a promising remote sensing technology for the 

3D characterization of vegetation and fuels (Hudak et al. 2017). Point clouds are capable of measuring 

vegetation height, cover, and relative density – all of which play important roles in determining fire behavior. 

Critically, these fuel measurements play an important role in determining the transition relationship between 

quasi steady-state surface fires and more extreme fire behavior such as torching and crowning, which can be 

crucial to understanding the fire risk of a given landscape (Parsons et al. 2017). 

Despite these promising advancements in fire and fuels modeling, there are still significant gaps in the research 

linking fuel models to the fire modeling environment. Fire modelers must balance careful tradeoffs between 

computational expense, data collection, and grid resolution when deciding how to represent vegetation as 3D 

gridded input data. To date, no comparisons have been published between observed fire behavior and simulated 

fire behavior of LIDAR-derived fuel cells. This paper explores the concept of altering three-dimensional fuel 

cells in terms of moisture content, bulk density, and resolution to provide an algorithmic approach to translating 

LIDAR point clouds into a CFD based simulation environment. 

Leveraging TLS and mass over time data collected in 2021 on burning saplings at the Missoula Fire Sciences 

Laboratory, we developed a methodology for representing complex vegetation in three-dimensional fuel cells. 

Then, we tested the effect of fuel cell descriptors such as fuel moisture content, bulk density, and resolution on 

modeled fire behavior in the FDS model. We present our methodology, which can be used to translate point 

cloud data to any CFD fire model with gridded fuel inputs such as FDS, FIRETEC, or QUIC-Fire. Lastly, we 

provide fire modelers with heuristics for making decisions on fuel cell fidelity in order to balance simulation 

accuracy with computational requirements using the FDS model. 

 

2. Methods 

The sapling burn experiments reported here were conducted in the Missoula Fire Sciences Laboratory burn 

chamber. The experiment was designed to examine the effect of drought stress on tree mortality when exposed 

to two controlled levels of fire intensity. We acquired 123 saplings of two species, Engelmann spruce (Picea 

engelmannii) and Ponderosa pine (Pinus ponderosa), from a local nursery. Saplings were acquired in May and 

stored in planter containers filled with soil and with the roots intact. During this storage period, half of the 

saplings from each species were given a low water treatment of water every one to two weeks so as to mimic 

conditions of a drought environment. The other half were adequately watered every three days so as to 

encourage normal development. 

Each day of the experiment, saplings were transported to the burn chamber and ignited over a pair of concentric 

ring gas burners. During the ignition period, each sapling was exposed to one of three fire intensity categories: 

no fire treatment, low burner treatment, or high burner treatment. At the time of the fire treatment, a tree was 

placed through the hole such that the tree stand rested on a scale. Additionally, the weight of the sapling was 

recorded during the burning period with a load balance transmitting at 0.5 Hz. 

For each sapling, three-dimensional scans were collected from a Leica Geosystems BLK360 Terrestrial Laser 

Scanner. Two scans were taken from the same location before and after the burn treatment. The TLS was run at 

a high density setting with a reported resolution of 5mm at 10 meters. Because the scans were taken in the same 

location, static references in the burn chamber were present to facilitate spatial referencing. The two scans were 

co-registered using Cyclone Register 360 software from Leica Geosystems in order to create a single 3D point 

cloud. Figure 1 shows the experimental setup with LIDAR scanner. 
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Figure 1- Experimental setup with LIDAR scanner at the Missoula Fire Sciences Laboratory 

There are several challenges associated with correlating 3D point clouds to fine fuel mass and location without 

the use of destructive sampling. A higher point cloud density does not necessarily correlate to a higher density 

of foliage or stem biomass. A voxel based representation of the experimental saplings offers numerous 

advantages. Duplicated points from stitching multiple scans are represented as a single voxel, voxels represent 

points returned to the scanner in addition to points occluded by overlapping woody material, and voxels are one 

step closer to the concept of a 3D fuel cell necessary for input to a CFD fire model (Hosoi and Omasa 2006). 

Our voxelization technique begins by identifying reference voxels. A reference voxel is the smallest possible 

voxel representation of a point cloud given the physical constraints of the TLS device and the scanning 

environment. Reference voxels have a Boolean value indicating the presence or absence of points within the 

voxel. We chose 1cm x 1cm x 1cm voxels for our reference voxel size due to the reported 5mm point density 

at 10 meters of the TLS device. We construct voxels at coarser resolutions by creating a voxel grid in the point 

cloud domain and counting the number of reference voxels that occur within the voxel at the desired resolution. 

When the voxel is converted to a fuel cell, biomass is distributed in proportion to the number of contained 

reference voxels.  

We conducted a multidimensional parameter study using the DAKOTA optimization toolkit. Each n-

dimensional sample generated by DAKOTA contains parameters for fuel cell resolution, fuel moisture content, 

and total dry foliage mass. We used the FDS lagrangian particle model to simulate the experimental burn for 

each sapling at five different fuel cell resolutions. FDS outputs foliage mass at 100 Hz which we used to compute 

a loss function between simulated and modeled fire behavior. Figure 2 shows a complement of five FDS 

simulations of the same sapling across five different fuel cell resolutions. 

https://doi.org/10.14195/978-989-26-2298-9_56


Advances in Forest Fire Research 2022 - D. X. Viegas & L.M. Ribeiro (Ed.) 

Chapter 1 - Decision Support Systems and Tools 

https://doi.org/10.14195/978-989-26-2298-9_56   Advances in Forest Fire Research 2022 – Page 356 
 

 

Figure 2 - FDS simulations of a burning sapling at different fuel cell resolutions 

 

3. Results 

We computed the RMSE of each simulation in the parameter sweep across sixteen saplings. For each sapling, 

we found the minimum RMSE determined from comparing the mass loss curves for observed and simulated 

burns. Figure 3 shows the minimum RMSE found in the set of simulations for Engelmann spruce sapling S63. 

We observe close parity between the simulated and observed mass loss in both the shape of the curves and the 

resulting change in mass. 

 

Figure 3 - Comparison between simulated and observed curves of cumulative mass change. This is the lowest RMSE 

value found out of the 16,384 model runs. 

The correspondence between RMSE and the independent variables allows us to examine the space sampled by 

DAKOTA in our multidimensional parameter study. Figure 4 shows the results of the numerical experiment as 

described above for one Engelmann spruce sapling. Each pane in the image represents a parameter sweep across 

2D points for a given fuel cell resolution. Each pixel has a value for fuel moisture content and dry foliage mass. 

Fuel moisture content was sampled uniformly in the range [20, 350]%, and dry foliage mass was sampled in the 

range [10, 80]g for a total of 256 points for each sampled fuel cell resolution. 
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Figure 4 - Distribution of RMSE values for the full 1,024 samples in the parameter sweep for sapling S50. The upper 

left pane is for simulations with a fuel cell resolution of 2cm, upper right for 4cm, bottom left for 8cm, and bottom 

right for 16cm. The x and y axis of each pane correspond to the sampled range of dry foliage mass and fuel moisture 

content. Each pixel is colored according to the RMSE resulting from the comparison between the simulated model 

output and the observed data for sapling S50. 

The multidimensional parameter study identifies a region of consistent minima across all fuel cell resolutions. 

The model is sensitive to dry foliage mass values as evidenced by the areas of high RMSE below 25g and above 

50g along the x-axis in figure 4. Minimum RMSE values occur at higher dry foliage mass values for the coarsest 

fuel cell resolution of 16cm x 16cm x 16cm. Additionally, the model shows sensitivity to fuel moisture content. 

This effect is more pronounced when dry foliage mass is high, and the model appears less sensitive to fuel 

moisture content when the dry foliage mass is low. The parameter sweep identifies a consistent region of minima 

across all fuel cell resolutions. We find that the coarsest fuel cell resolution expands the area of RMSE minima 

across a larger range of dry foliage mass values. 

In addition to the parameter space plots for individual saplings, we also analyze the effects of independent 

variables on RMSE. We compute the Pearson correlation coefficients between dry foliage mass, fuel moisture 

content, and fuel cell resolution on the logarithm of RMSE for each of the sixteen multidimensional parameter 

studies. The distribution of correlation coefficients are displayed in Figure 6. This result suggests that fuel cell 

resolution has a significantly lower ability to predict RMSE than dry foliage mass or fuel moisture content. 
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Figure 6 - Box and whisker plot of the distribution of correlation coefficients between log(RMSE) and three 

independent variables: Dry Foliage Mass, Fuel Moisture Content, and Fuel Cell Resolution for n=16 saplings. The 

box extends from the first quartile (Q1) to the third quartile (Q3) of the data, with a line at the median. Whiskers 

extend from the lowest correlation coefficient to the highest correlation coefficient in the data. We take the absolute 

value of the correlation coefficient in order to capture the magnitude, but not the direction, of the correlation. 

 

4.  Discussion 

In this study we developed a methodology for describing heterogeneous canopy fuel loads using LIDAR point 

clouds. Next, we conducted a series of numerical experiments examining the effectiveness of this technique by 

comparing FDS model output with observed load balance data taken from a series of experimental tree burns. 

We used DAKOTA to conduct a parameter sweep on fuel moisture content and dry foliage mass and identified 

physically plausible local minima. Additionally, we found that our sampling technique identified an area of 

RMSE minima for all fuel cell resolutions, and that the area was consistent for 2-8cm resolution fuel cells. 

Our fuel cell methodology represents a first step at achieving this goal of linking data from LIDAR points clouds 

and coupled fire-atmospheric models. While we found close parity between our fire simulations in FDS and 

observational data using our 3D fuel models, many opportunities for further research and refinement exist. For 

example, our technique tends to over-sample reference voxels associated with the stem of the saplings. The 

result of this phenomenon is the over-weighting of combustible thermally thin foliage concentrated in the middle 

of the 3D fuel model. This phenomenon likely results in an overestimation of mass loss when the vegetation is 

exposed to a heat source in a fire effects model. Future research can expand on previous work segmenting 

foliage from woody material in LIDAR point clouds (Seielstad et al. 2011) in order to improve our methodology 

by characterizing reference voxels by vegetative return type. 

Both fine and coarse fuel cell grids were capable of accurately characterizing observed mass loss in a simulation 

environment. Based on these results, we conclude that if the primary goal of a simulation is to reproduce the 

burning behavior of a 3D fuel model, then a coarse fuel cell grid can successfully balance tradeoffs between 
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computational complexity and representative heterogeneity. While high resolution LIDAR data can improve 

the representative heterogeneity of 3D fuel models, we find that high resolution fuel descriptions do not improve 

model results. 

Additionally, the importance of dry foliage mass and fuel moisture content suggest that fire modelers should 

have a high level of confidence in their fuel attributes in order to have confidence in model results. Non-

destructive biomass estimates of vegetation are an active area of research. Our study suggests that obtaining 

accurate biomass estimates is crucial for achieving model accuracy. More work is needed to examine the 

relationship between biomass measurements from traditional field techniques or derived from LIDAR data, and 

fuel inputs to couple fire-atmospheric models. 

One major shortcoming of our study is that we were unable to evaluate the relationship between numerically 

identified fuel attributes from RMSE minima and actual fuel attributes measured from vegetation samples. 

While the majority of parameter spaces resulted in physically plausible fuel attributes, regions of RMSE minima 

also contained physically implausible minima. For example, our numerical experiments consistently identified 

regions of high dry foliage mass and low fuel moisture content as minima. This often contradicted known high 

water treatments applied to the sapling. 

Future research can examine the role of branchwood in thermal degradation, velocity fields, and moisture 

content. The role of DAKOTA can expand to include additional parameters, simulation designs, and more 

advanced analysis techniques. Additional investigations into the effects of more detailed 3D fuel models on fire 

behavior models will help us better understand how to apply coupled fire-atmospheric fire models to real world 

problems like prescribed burn planning. 
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