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Abstract 

Vegetation mapping requires accurate information to allow its use in applications such as sustainable forest management 

against the effects of climate change and the threat of wildfires. Remote sensing provides a powerful resource of 

fundamental data at different spatial resolutions and spectral regions, making it an essential tool for vegetation mapping 

and biomass management. Due to the ever-increasing availability of free data and software, satellites have been 

predominantly used to map, analyze, and monitor natural resources for conservation purposes. This study aimed to map 

vegetation from Sentinel-2 (S2) data in a complex and mixed vegetation cover of the Lousã district in Portugal. We used 

ten multispectral bands with a spatial resolution of 10 m, and four vegetation indices, including Normalized Difference 

Vegetation Index (NDVI), Green Normalized Difference Vegetation Index (GNDVI), Enhanced Vegetation Index 

(EVI), and Soil Adjusted Vegetation Index (SAVI). After applying Principal Component Analysis (PCA) on the 10 S2A 

bands, four texture features, including Mean (ME), Homogeneity (HO), Correlation (CO), and Entropy (EN), were 

derived for the first three Principal Components. Textures were obtained using the Gray-Level Co-Occurrence Matrix 

(GLCM). As a result, 26 independent variables were extracted from S2. After defining the land use classes by object-

based, the Random Forest (RF) classifier was applied. The map accuracy was evaluated by the confusion matrix, using 

the metrics of Overall Accuracy (OA), Producer Accuracy (PA), User Accuracy (UA), and Kappa Coefficient (Kappa). 

The described classification methodology showed a high OA of 90.5% and Kappa of 89% for vegetation mapping. Using 

GLCM texture features increased the accuracy up to 2%. The ME and CO had the highest contribution to the accuracy 

of the classification among the GLCM textures. GNDVI had outperformed other vegetation indices in variable 

importance. Also, using only S2A spectral bands, especially bands 11, 12, and 2, showed a high potential to classify the 

map with an OA of 88%. This study showed that adding at least one GLCM texture feature and at least one vegetation 

index into the S2A spectral bands may effectively increase the accuracy metrics and tree species discrimination.  

 

 

Notation 

B2     S2A band2 

B3     S2A band3 

B4     S2A band4 

B8     S2A band8 

N     Number of grey levels  

P     Normalized symmetric GLCM of dimension N × N  

P (i, j)   Normalized grey level value in the cell i, j of the co-occurrence matrix 

d     Distance 

θ     Direction 

�̅�     Mean of Px 

�̅�     Mean of Py 

𝜎𝑥     Standard deviation of Px 

𝜎𝑦     Standard deviation of Py 
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1. Introduction 

Wildfires have wide-ranging effects on people's lives, wildlife, the natural environment, and the economy 

worldwide. Wildfire is a key component of the Mediterranean landscapes and ecosystems due to climate change, 

changes in the Land Cover and Land Use (LCLU), agriculture abandonment and expansion of forests and 

shrublands, expansion of Wildland-Urban Interfaces (WUI), and reduction in forest management (Xavier et al. 

2006). Southern European nations such as Spain and Portugal with Mediterranean Basin (MB) forests would 

face the greatest fire dangers, given they are already prone to severe and frequent wildfires ( Investment in 

Disaster Risk Management in Europe 2021, Costa H et al. 2020). Portugal experienced an unprecedented fire 

season in 2017, with a record of 540,000 ha burnt, 119 deaths, and millions of euros in losses and damage 

(Benali and Fernandes 2021, Monterio-Henriques and Fernandes 2018). Severe drought and the emergence of 

meteorological conditions conducive to large wildfires amplified the Portuguese 2017 fire season ( Benali and 

Fernandes 2021). According to the Portuguese Institute of the Sea and the Atmosphere (IPMA), May 2022 was 

the warmest May in the past 92 years because of severe drought conditions, unusually high temperatures, and 

low average precipitation (IPMA 2022). Consequently, MB forests' protection from wildfire and climate change 

will be critical, necessitating large-scale fuel mapping and management (Kolström et al. 2011). 

Conventionally, vegetation mapping has been performed using field surveys, image interpretation, and ancillary 

data analysis. Nowadays, remote sensing data with active and passive sensors are the main source of information 

for earth observation and producing up-to-date LCLU classification (Aragoneses and Chuvieco 2021, Xie et al. 

2008, Chaves et al. 2020). Forest mapping and monitoring can be significantly improved by using freely 

available middle-resolution remote sensing data such as the Sentinel constellation. Sentinels' data provide high 

temporal frequency, different spatial coverage, and characterize various fuel types and their conditions with 

several spectral bands ((Aragoneses and Chuvieco 2021, Xie et al. 2008, Zeng et al. 2020, Kaplan 2021). 

Sentinel-2 mission with two satellites, Sentinel 2 level A (S2A) and Sentinel 2 level B (S2B), was launched by 

the European Union's Copernicus Earth Observation program of the Europe Space Agency (ESA) in 2015 and 

2017, respectively. Sentinel-2 mission offers spatial resolution varying between 10 m and 60 m and a revisit 

frequency of 5 days ( Sentinel-2 User Handbook. Vol. 2). Sentinel-2 includes three red-edged vegetation and 

the SWIR bands that are highly susceptible to chlorophyll content and amend distinguishing different vegetation 

types and LCLU classification accuracy (Chaves et al. 2020). Several studies found Sentinel-2 data with high 

potential in different applications such as crop classification (Hernandez et al. 2020), tree species classification 

(Costa et al. 2022, Wessel et al. 2018, Persson et al. 2018), mapping burned area (Pacheco et al. 2021), and 

forest type classification (Kaplan 2021). Most of the recent studies have shown that non-parametric machine 

learning approaches such as Artificial Neural Network (ANN), Support Vector Machine (SVM), and Random 

Forest (RF) have a great potential to classify heterogeneous land covers (Wessel et al. 2018, Pacheco et al. 2021, 

Sheykhmousa et al. 2020). Ma et al. (2017) found RF as the mostly used supervised classifier and more stable 

object-based image analysis (OBIA) with the highest mean accuracy of 85.81%, followed by SVM through 

reviewing 173 publications on supervised object-based classification. For example, Wessel et al. (2018) 

classified tree species based on multitemporal Sentinel-2 data with the highest overall classification accuracy 

of 91% for the SVM object-based algorithm. Persson et al. (2018) also studied the classification of common 

tree species in Sweden by applying RF classifier on multitemporal Sentinel-2 data. They achieved the highest 

overall accuracy of 88.2% for the combination of all spectral bands for four image dates.  

Several operational programs are undergoing to produce global land cover maps, such as CORINE Land Cover 

(CLC), Land Change Monitoring, Assessment, and Projection (LCMAP), North American Land Change 

Monitoring System (NALCMS), and recently WorldCover produced by ESA at 10m resolution (Costa et al. 

2018). These harmonized LCLU mappings have great potential for providing valuable information on Earth's 

surface; however, they face several challenges. The thematic accuracy of these global or continental land cover 

maps is spatially dependent on a low-frequency basis (e.g., every five years or more). Usually, they cannot 

comply with the user-specific requirements in space and time (Costa et al. 2018). Several researchers found the 

Mediterranean countries, such as Portugal and Spain, with the lowest overall accuracy, below 70% out of all 

European countries mapped (Costa et al. 2022, Liu et al. 2021). National land cover mapping with higher 

accuracy and up-to-date and detailed data can use as a complementary product for larger mapping scales (Costa 

et al. 2022).  

SMOS (Sistema de Monitorização de Ocupação do Solo) is the land cover monitoring system for mainland 

Portugal which is in preparation by Directorate General for Territory (DGT) based on COS (Cartografia de Uso 

https://doi.org/10.14195/978-989-26-2298-9_71


Advances in Forest Fire Research 2022 - D. X. Viegas & L.M. Ribeiro (Ed.) 

Chapter 1 - Decision Support Systems and Tools 

https://doi.org/10.14195/978-989-26-2298-9_71   Advances in Forest Fire Research 2022 – Page 446 
 

e Ocupação do Solo), the traditional LCLU map of Portugal. An annual land cover cartography product of 

mainland Portugal (COSsim) based on sentinel-2 was started to overcome the limitation of COS. Costa et al. 

(Costa et al. 2022) presented an approach to map COSsim for 2018 with an overall accuracy of 81.3% using 

Random Forest (RF) classification and Sentinel-2 multi-temporal data. Although they achieved an accuracy of 

over 90% for southern Portugal, the classification overall accuracy for the center and North Portugal was below 

80%, especially for the Coimbra district with approximately 75%. Their methodology was developed based on 

the following stages such as image classification, spatial stratification, knowledge-based rules (combination of 

expert knowledge and auxiliary data), intra-annual change, and manual editing. They classified this map into 

13 thematic classes including the predominant species such as evergreen oaks, Eucalyptus, Maritime pine, and 

Stone pine (Costa et al. 2022). Costa et al. (2018) also studied a methodology with the combination of supervised 

and rule-based classification under the scope of the Land Use and Coverage Area frame Survey (LUCAS) to 

produce annual land cover statistics over Portugal from 2010 to 2015. They collected temporal Landsat data 

and auxiliary data such as Land Use and Land Cover map (COS2010) and Land Parcel Identification System 

(LPIS). ANN, SVM, and RF have been used for classification in their study and final classification with 15 

classes obtained through the voting process. They reached the highest overall accuracy of 87.5% for the year 

2010 and the lowest accuracy of 86.4% for the years 2014 and 2015.  

The main objective of this study is to apply RF classification algorithms on S2A data to map the vegetation in 

the Lousa region, Portugal. The specific purpose of this study is to increase the interclass separability of forest 

and vegetation classes. According to the literature, no up-to-date vegetation mapping with Sentinel-2 and high 

overall accuracy was seen for the mentioned study area. Principal component analysis (PCA) was applied to the 

S2A spectral bands resampled to 10m resolution. Four common Vegetation Indices (VIs) and 12 GLCM-based 

textural variables, extracted from three first principal components (PCs), were integrated into the S2A spectral 

bands to better classify various vegetation in complex land cover. A comparison has been performed between 

the classification with all 26 independent variables and three different combinations of S2A spectral bands, 

vegetation indices, and GLCM textures. The importance of input variables has been analyzed based on Mean 

Decrease Accuracy (MDA) and Mean Decrease Gini (Gini). The obtained high-accuracy vegetation map can 

be used for biomass management and wildfire risk assessment. 

 

2. Materials and Methodology 

2.1. Study area 

The study area is in the central region of Portugal. The study area is 138.4 km2 (13840 ha) in size, latitudes 40º 

and 40º 3' N and longitudes 8º 09' and 8º 19' W, and is located in the municipality of Lousa in the Coimbra 

district of Portugal, as shown in Figure 1. The Lousa district has an elevation ranging from 57 m near the River 

Ceira in the north to 1205 m at Trevim in the south, which is the highest point of Serra da Lousa. Over 68% of 

the territory is below 400 meters of altitude. Slope values vary from the flat region in the northwest, with slopes 

typically less than 10̊, to mountainous areas in the southeast, with slopes larger than 20̊ ( Plano Municipal de 

Defesa da Floresta Contra Incêndios 2020). 

The forest area (about 10,385 ha) is the municipality's dominant land use, accounting for approximately 75% of 

the municipality's total area. Agriculture land occupies 1399.27 ha. As a result, forestry and agricultural areas 

comprise most of the land, covering approximately 85% of the total area (Incêndios 2020). The predominant 

vegetation cover includes Pinus pinaster and Eucalyptus globulus species represent about 50% and 25% of the 

total forest species in the municipality, respectively (Incêndios 2020).  

The climate of Lousa is the Mediterranean, with moderate, rainy winters and hot, dry summers. The months of 

autumn, winter, and early spring see the most precipitation. Their values are highly dependent on altitude and 

range, on average, between 1000 and 1800 mm annually. In 2017, 28 distinct wildfires burned about 4560 ha 

of forest in the municipality. The largest fires detected in Lousa municipality happened during the summer when 

temperatures average above 30 C֯, and relative humidity falls below 30%, except for October 2017, which was 

affected by Storm Ophelia (Incêndios 2020). The severity of the Portuguese 2017 wildfires was exacerbated by 

a severe drought and the occurrence of meteorological conditions conducive to large wildfires (Viegas et al. 

2017). 
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Figure 1- Geographical framework of the location and limits of the study area within a firEUrisk project and 

mainland Portugal: a) Sentinel-2 false-color composite image and b) study area- Lousa. 

2.2. Materials, Data, and Model Algorithm 

The S2A image processing procedures are synthetically represented in the workflow (Figure 2). Several 

processing stages were needed to achieve the vegetation mapping.  

 

Figure 2- Scheme of vegetation mapping with Sentinel-2 data. 

2.3.  Dataset and preprocessing 

Sentinel-2A MSI Level-2A images taken on July 18th, 2020, were derived from the Sentinels Scientific Data 

Hub for the study area (https://scihub.copernicus.eu/). The image was taken during the dry season to have less 

cloud coverage percentage (0.25%). The image was projected from WGS84 Geographic latitude/longitude 

coordinates to EPSG:3763 - ETRS89 / Portugal TM06, which preserves the area measure. 

Sentinel-2 is equipped with MultiSpectral Instrument (MSI), which has four 10 m bands (visible and infrared – 

NIR), six 20 m bands (red-edge vegetation and short-wave infrared – SWRI), and three 60 m bands (Kaplan 

2021). It is possible to increase the spatial resolution of all bands to 10 m using the resampling method and 

downscale the coarse resolution to fine resolution (Kaplan 2021, Sentinel-2 User Handbook. Vol. 2 2015, Zheng 

et al. 2017). Pixels of 20 m bands were resampled to the pixel size of 10 m with the Nearest Neighbor technique 

using ArcGIS Pro (version 2.8).  
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The high spectral resolution of Sentinel-2 imagery enables the extraction of different features. Based on the 

literature review and the sensitivity of optical features to biomass, four common spectral vegetation indices 

(VIs) were derived, including Normalized Difference Vegetation Index (NDVI), Green Normalized Difference 

Vegetation Index (GNDVI), Enhanced Vegetation Index (EVI), Soil Adjusted Vegetation Index (SAVI) using 

ArcGIS Pro(Noi Phan et al. 2020, Xia et al. 2017). The complete list of formulas can be found in Table 1 (B2, 

B3, B4, and B8 are the correspondence S2A bands). NDVI is strongly related to vegetation content, and NDVI 

high values indicate denser and healthier vegetation. GNDVI is a modified form of NDVI that can detect varying 

chlorophyll concentration rates by using green reflectance instead of red reflectance (Gitelson et al. 1996). EVI 

was developed to increase the sensitivity of vegetation signals in high biomass locations (Bhatnagar et al. 2021). 

SAVI also is a vegetation index that aims to reduce the impact of soil luminance, particularly in areas with low 

vegetation cover (Somvanshi and Kumari 2020). 

Table 1- Vegetation indices (VIs) and applications from S2A. 

Vegetation Indices Formulation Application 

NDVI 𝐵8 − 𝐵4
𝐵8 + 𝐵4

 
Detection of vegetation communities in 

various seasons (29) 

Estimating changes in vegetation state (28) 

Determining the density of greenness (31) 

GNDVI 𝐵8 − 𝐵3
𝐵8 + 𝐵3

 
Determining water and nitrogen uptake in the 

crop canopy (32)(28) 

EVI 𝐵8 − 𝐵4
𝐵8 + (6 × 𝐵4) − (7.5 × 𝐵2) + 1

× 2.5 
Detection of vegetation communities in 

various seasons (29) 

Land cover classification (26) 

SAVI 𝐵8 − 𝐵4
𝐵8 + 𝐵4 + 0.5

× 1.5 
Minimizing soil brightness influences (33) (30) 

Land cover classification (26) 

In addition to VIs, the previous research proves that using textural features significantly improves classification 

accuracy, especially for the species with similar spectral characteristics but different spatial patterns (Gini et al. 

2018). PCA is commonly used in data mining to explore data and reduce data dimensionality (Guo et al. 2002, 

Xiao 2010). It reduces dimensionality by identifying a new set of variables that is smaller than the original set 

and captures big principal variability in data while disregarding minor variability (Xiao 2010). The three first 

PCs with cumulative eigenvalues of more than 99% were extracted from the spectral bands in ArcGIS Pro, as 

shown in Appendix A (Table A1). 

A total of four textural variables, including Mean (ME), Entropy (EN), Homogeneity (HO or also called Inverse 

Difference Moment- IDM), and Correlation (CO), were derived using the first three PCs (Kattenborn et al. 

2019). These textures were obtained through the Gray-Level Co-Occurrence Matrix (GLCM) statistical 

approach with Probabilistic Quantizer (Quantization levels of 32), the inter-pixel distance of 1, and window size 

of 5×5 using SNAP (version 8.0.0). The window size was optimized based on this particular study area since 

the texture measures are dependent on the window size ( Chatziantoniou et al. 2017). The formulas of textures 

and their application are listed in Table 2. The GLCM method examines the distribution of gray levels across 

adjacent pixels by considering the pixels' spatial position in an image ( Humeau-Heurtier 2019, Xu and Gowen 

2020, Zhang et al. 2017). Humeau-Heurtier (2019) defined the GLCM P(i,j│d,θ) as a relative frequency of the 

occurrence of the same intensity value i (reference pixel) adjacent to the different intensity value j (neighbor 

pixel) in a specific spatial relation at the distance d and direction of θ. Based on these parameters, ME used the 

frequency of occurrence of a certain neighboring pixel to weight the pixel value (Held 1998). EN assesses the 

degree of disorder and complexity of the texture distribution in GLCM ( Humeau-Heurtier 2019, Zhang et al. 

2017). HO shows the level of homogeneity (Humeau-Heurtier 2019), and CO measures the linear relationship 

between pixel values for the grayscale in the horizontal or vertical direction ( Humeau-Heurtier 2019,Xhang et 

al. 2017). 
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Table 2- Texture metrics Formula 

Texture Metrics Formulation Application 

ME 

∑∑𝑖 × 𝑃(𝑖, 𝑗|𝑑, 𝜃)

𝑁

𝑗

𝑁

𝑖

 

Weighting pixel value based on the frequency 

of its occurrence in conjunction with a specific 

neighbor pixel value (42,43) 

Calculating the mean processing window value 

(44) 

EN 

−∑∑𝑃(𝑖, 𝑗|𝑑, 𝜃)

𝑁

𝑗

𝑁

𝑖

log2 𝑃(𝑖, 𝑗|𝑑, 𝜃) 
Assessing the disorder of the GLCM (39) 

Reflecting the complexity of the texture 

distribution (41)  

HO 

−∑∑
𝑃(𝑖, 𝑗|𝑑, 𝜃)

1 + (𝑖 − 𝑗)2

𝑁

𝑗

𝑁

𝑖

 

Measuring the level of homogeneity in pairs of 

pixels (39) 

CO ∑ ∑ (𝑖 − �̅�)(𝑗 − �̅�)𝑃(𝑖, 𝑗|𝑑, 𝜃)𝑁
𝑗

𝑁
𝑖

𝜎𝑥𝜎𝑦
 

Measuring grey level linear relation between 

pixels (39,41,45) 

2.4. Reference Data 

Training samples for each ground object must be selected separately since RF is a supervised classifier. The 

basis for the selection of training and validation samples was acquired visually from Portugal Directorate-

General for the Territory (DGT; Direção-Geral do Território 2018), Portugal Institute for Nature Conservation 

and Forests (ICNF; Instituto da Conservação da Natureza e das Florestas 2015), and Google Earth (orthophoto 

maps). Vegetation category was selected and verified based on dominant species, as presented in Table 3, such 

as Pinus pinaster, Eucalyptus, Castanea, Pinus pinea, Quercus (including Quercus robur, Quercus suber, and 

Quercus ilex), Acacia, and other land use including cropland and agriculture land, shrubland and grassland, 

Water and barren (area without vegetation including roads and urban area) ( Incêndios C 2020). Therefore, 

samples' polygons were manually created based on visual interpretation and reference sources.  

Table 3- Dominant species represented in ha and percentage adapted from (Incêndios C 2020). 

Species Area (ha) Percentage of the Study Area (%) 

Pinus pinaster 5190.17 37.5 

Eucalyptus 2611.95 18.9 

Quercus 1273.36 9.2 

Castanea 510.93 3.7 

Acacia 506.26 3.6 

Pinus Pinea 11.18 0.1 

 

2.5. Image Classification  

A total of 26 independent variables (including 10 spectral bands, four vegetation indices, and 12 texture 

measures) were used as an input to supervised classification to improve the classification performance 

(Aragoneses and Chuvieco 2021). RF algorithm was applied as a machine learning algorithm for vegetation 

classification in RStudio (version 2022.02.3+492). RF algorithm, an ensemble classifier that produces multiple 

decision trees, is commonly used in LULC due to its' high accuracy results achieved, solving highly non-linear 

problems on relatively small-size databases, and handling a large number of input features (Kluczek and 

Zagajewski 2022, Wójtowicz et al. 2021, Adeli et al. 2022). Furthermore, RF enables input feature ranking 

through random permutation, which has been studied in this paper using the RandomForest package in R (Zheng 

et al. 2017). The number of trees (ntree) and the number of random samples per node (mtry) were 500 and five, 

respectively. As shown in Appendix A (Figure A1 ), by increasing the ntree, out-of-bag (OOB) Error decreases 

and becomes stable at around 200 (Feng et al. 2015, Hanes et al. 2022). Researchers showed satisfactory results 

with the default parameter for the RF classifier which is ntree of 500 trees (Immitzer et al. 2016,Wang et al. 
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2015). In addition, a mtry that is excessively small or large reduces the individual tree's prediction ability. The 

optimum value for mtry calculates through 1/3 or the square root of the number of input variables (43,53). In 

this paper, the optimum mtry was calculated as five through the tuneRF function in R, as it is shown in 

Appendix A (Figure A2). Samples were randomly subdivided into 70% for the training of the classification 

algorithm and 30% to validate the model. Finally, an accuracy assessment of vegetation classification has been 

performed by calculating the confusion matrix.  

2.6.  Accuracy Assessment  

Accuracy assessments have traditionally relied on a confusion matrix (Stehman and Foody 2019). The 

confusion matrix measures OA, PA, UA, and Kappa to describe the fitness between the generated classes and 

the reference data (Xie et al. 2008, Sheykhmousa et al. 2020). OA is directly correlated to the percentage of the 

study area that is correctly classified, and the Kappa is also measuring the performance of RF ( Stehman and 

Foody 2019, Landis and Koch 1977). OA is a relatively coarse measurement since it does not provide 

information on class-specific accuracy, while PA and UA respectively provide class-specific accuracy on the 

reference and classified area per class (Stehman and Foody 2019). The AO, PA, and UA may consider high 

precision with accuracy above 79% (56), and the Kappa greater than 80% represents a high degree of agreement 

(Landis and Koch 1977). 

 

3. Results and Discussion 

A total of 26,100 pixels were selected for the training and validation samples by visual interpretation using 

reference sources, including DGT, ICNF, and Google Earth. The effective sample size is suggested to be 

between 0.2% to 3% of the total dataset pixels (Blatchford et al. 2021). The sampling size of this study is 

approximately 1.3% of the total pixels. Increasing the training sample size generally boosts classification 

accuracy. Many researchers have found a positive correlation between classification accuracy and sample size 

(Ma et al. 2017). According to Moraes et al.(2021), there is no recommended minimum sample size, and the 

sufficient sample size depends on several parameters such as the classifier, predictor variables, class definition, 

and size and spatial features of the study area. They analyzed the influence of sample size on the LCLU in the 

North of Portugal using S2 data and the RF classifier. They compared OA for the sample size of 50 to 6000 per 

class. They found a similar OA value with a variation of 2%, and the highest value of 73.7% indicated the low 

sensitivity of the RF classifier to the sample size (Moraes et al. 2021). According to the actual occupied area in 

( Incêndios C 2020), Pinus pinaster and Eucalyptus have the greatest number of pixels, and other classes have 

a similar proportion of actual occupied. Samples were divided into 70% (17394 pixels) as training samples and 

30% (8706 pixels) as validation samples using Stratified random sampling in R. Appendix B (Table B1) shows 

the total of 10 classes for this study. 

Accuracy assessment of the classification was evaluated based on the confusion matrix and OA, PA, UA, and 

Kappa metrics. The rows and columns of the confusion matrix shown in Table 4 indicate the map classification 

and the reference classification, respectively. Diagonal cells of the matrix show the correct classifications, and 

off-diagonal cells indicate misclassifications. The repetition of 10 times was conducted for an unbiased 

evaluation, and the mean accuracy metrics are presented in Table 5. OA 90.9% (±1) and Kappa of 89% (±1) 

have achieved for this classification, indicating a high classification accuracy. The lowest and highest PA was 

obtained for Acacia and Water, respectively. The other classes have a high accuracy of over 90%, except for 

Quercus, with a PA of 79.5%. In the case of UA, barren has the highest accuracy of 97.1%, while Acacia has 

the lowest with a value of 70.1%. Predominant species of Pinus pinaster and Eucalyptus has a high UA and PA 

of over 90%.  
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Table 4- Confusion Matrix and statistical measures for RF vegetation classification. 

 

Figure 3 shows the classified vegetation map based on the proposed methodology. Figure 4 represents the area 

and percentage of each class in the classified map and reference data. According to the result, the largest area 

is occupied by Pinus pinaster followed by Eucalyptus mostly in the south and north of the study area, 

respectively. However, the Pinus pinaster has the majority in the reference data and occupied approximately 

37% of the study area ( Incêndios C 2020,DGT 2018,ICNF 2016). Since the reference data were based on 

COS2018 (DGT 2018), they were not up-to-date and accurate. It is necessary to perform a field measurement 

to detect the changes and assess the final classification of this paper. Land cover changes may happen due to 

wildfire or cutting trees either for commercial purposes by private land owners or forest management. In 

addition, the study area is very heterogeneous and has several areas with mixed species that it is also hard to 

distinguish visually using Google Earth. Also, Cropland/Agriculture land class has a greater area than the 

reference data mentioned in Section2.1. Some of these misclassifications were due to the new plantation field 

of tree species and confusion with the Shrubland/Grassland class. Both of these fields have a similar pattern and 

spectral features of Cropland/Agriculture land class. The other six classes' areas predicted similar results 

compared to the reference data with an error of less than 3%, referring to Appendix B (Table B1) for more 

information. According to Costa et al. (2022), there is always expected to have spectral confusion between 

shrubland and tree species or grassland and agricultural land because of similar spectral features of some classes. 

They also mentioned the broad conceptual definition of the classes as another factor of misclassification ( Costa 

et al. 2022). Shrubland/Grassland class may have a broad conceptual definition since it includes natural, semi-

natural, and agricultural grassland and also shrubs. Costa et al. (2022) also found several classification 

contradictions between their LCLU classified map and COS2018 (DGT 2018) for the land cover of mainland 

Portugal. They presented a significant increase in the occupied area of shrubland and grassland as one of the 

major land covers of Portugal in comparison with COS (DGT 2018). Problematic classes may also result from 

the fragmented species distribution, either rare or mixed with other classes, especially for tree stands (Immitzer 

et al. 2016). The major reasons for different classification statistics may relate to the higher resolution imagery 

of S2A with 10 m compared with traditional maps, including COS, class definition, and impact of the 2017 

wildfire and burnt area on land cover changes (DGT 2018). Immitzer et al. (2016) mentioned the effect of a 

parameter such as a stand age and density, crown coverage, and understory on the spectral behavior of the tree 

species and their intra-class separability. Several Pine and Eucalyptus stands have been seen in this study area 

with different ages due to the plantation or cutting. All these effective factors have been considered in this study 

while comparing the result with the reference data. 

 Reference Total PA 

C
la

ss
if

ic
a
ti

o
n

 

Classes 1 2 3 4 5 6 7 8 9 10 N° 

Pixels 

% 

1 2136 40 36 18 63 0 0 5 4 0 2302 92.8 

2 101 2052 13 11 4 11 26 51 1 7 2277 90.1 

3 32 10 580 64 7 0 17 20 0 0 730 79.5 

4 24 2 41 333 1 0 0 1 0 0 402 82.5 

5 30 2 6 9 176 0 0 0 0 0 223 78.8 

6 0 0 0 0 0 43 0 3 0 1 47 91.5 

7 10 5 5 6 0 2 638 1 0 17 684 93.3 

8 19 21 13 1 0 3 11 1083 0 0 1151 94.1 

9 0 0 0 0 0 0 0 0 39 0 39 100 

10 0 2 1 0 0 0 9 0 0 831 843 98.6 

Total N° Pixels 2352 2134 695 442 251 59 701 1164 44 856 8706 

UA % 90.8 96.2 83.5 75.3 70.1 72.9 91 93 88.6 97.1 

OA 90.9% 

K 89% 
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Figure 3- Vegetation map generated based on 26 independent variables of S2A imagery using RF classification for 

Lousa, Portugal.  

 

Figure 4- Comparison of classification result and reference data represented in the area (ha) and percentage. 
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3.1. Importance of Independent Variables 

In order to assess the importance of each variable in RF classification accuracy, MeanDecreseAccuracy (MDA) 

and MeanDeacreseGini (Gini) have been used through random permutation. Figure 5 (a) and (b) show the 

ranking of the variables based on their contribution to distinguishing the classes. This ranking was almost the 

same for all the repetitions. Band 11 and 12 (SWIR) and band 2 (Blue) have the highest MDA and Gini among 

the S2A spectral bands, although the NIR band of 8 achieved low scores. In the case of the GLCM textures, the 

ME and CO of the PC3 have the highest rank among all 26 variables in MDA. Generally, the ME and CO for 

the PC1 and PC3 were ranked among the top five variables in both MDA and Gini. Additionally, GNDVI and 

NDVI have the highest contribution among VIs.  

  
(a) (b) 

Figure 6 - Band Importance ranking based on mean decrease accuracy and mean decrease Gini. 

The methodology has been applied to different independent variables input to analyze the importance of the 

GLCM textures. The classification was repeated for three additional scenarios of input bands: (I) Only S2A 

spectral bands, (II) S2A spectral bands and VIs, and (III) S2A spectral bands and GLCM textures. The Rf 

classifier based on S2A spectral band and GLCM texture achieved the maximum OA and Kappa, as presented 

in Table 7. Using all 26 variables has ranked second with a difference of 1.2%, lower than the combination of 

spectral bands and GLCM textures. Wang et al. (2015) also achieved high accuracy of 97.1% by using only 

GLCM feature on IKONOS multispectral bands, which is higher than the accuracy of the combination of all 

spectral bands and GLCM and GI features (96.9%). They believed that lower accuracy of all bands is associated 

with increasing omission and commission errors of some Gi features. In this paper, the lower accuracy of 

classification with all bands may cause by vegetation indices. However, the combination of spectral bands and 

four vegetation indices yielded higher accuracy than only spectral bands and improved the accuracy. The 

minimum OA and Kappa also were obtained for employing only S2A spectral bands. Adding GLCM texture to 

S2A spectral bands has increased the accuracy metrics by 4%.  

Table 6- OA and Kappa for RF classification with different combinations of independent variables. 

 All 

bands 

Spectral bands Spectralbands+ VIs Spectralbands+ 

GLCM texture 

OA (%) 90.8 88 88.6 92 

Kappa (%) 89 86 86.1 90.2 
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Appendix B (Figures B1) shows the band importance for these three additional classifications. In all of the 

four scenarios of input variables, band11 and band 2, ME and CO of PC1 and PC3 outperformed other variables 

with the high value of MDA and Gini. It can be concluded that adding at least one GLCM texture may improve 

the classification accuracy. In this paper, the ME and CO have enhanced the RF classification with higher 

accuracy. Several studies have indicated the importance of texture feature extraction in increasing the accuracy 

of the classified map (Zheng et al. 2017, Zhang et al. 2017,Adeli et al. 2022). Wang et al. (2015) found the ME 

as the most important variable in mapping forest health conditions using IKONOS imagery. Zhang et al. (2017) 

emphasized the importance of GLCM texture feature extraction on classification accuracy improvement. These 

textures provide information about different objects with the same spectral, while spectral bands provide the 

data for the same objects in the different spectrums (Zheng et al. 2017). Zheng et al. (2017) have suggested 

using Extended Attribute Profiles (EAPs) in addition to GLCM textures, which can improve shrubland, 

agricultural land, and barren discrimination. Furthermore, S2A spectral bands have shown a high potential in 

the LCLU classification of the regional study area of this paper without using additional variables, which were 

also mentioned previously in several research studies (Chaves et al. 2020,Zheng et al. 2017, Immitzer et al. 

2016). In this paper, bands 11 (SWIR) and band 2 (blue) were almost among the five first important variables 

in all combinations. Immitzer et al. (2016) found bands 2 and 11 as the highest score while NIR band 8A was 

the lowest score for forest species classification. Feng et al.(2015) declared that spectral features contribute the 

most in their study with the UAV for flood mapping. In their study, the red and blue bands followed by ME 

were the most important variables. 

3.2. Effect of Bootstrap Sample Size 

Rf classifier uses bootstrap aggregation, randomly creating different training subsets of the original training 

dataset to grow the individual regression trees ( Immitzer et al. 2016, Wang et al. 2015). Wang et al.(2015) 

suggested using two-thirds of the validation dataset per subset for bootstrap sample size. The minimum value 

of the bootstrap sample size in this paper was equal to the minimum class pixels (Water), and the largest sample 

size was approximately equal to the extraction of highest and lowest class pixels (Pinus pinaster and Water). 

As shown in Figure 7, the lowest and highest OA and Kappa were calculated for the sampling size of 137 and 

7000, respectively. The highest OA was increased by around 15.7%, and Kappa was increased by 19.3%. 

According to UA and PA, the lowest UA and PA has appeared in the sample size of 137 with zero percentage 

of water and Pinus pinea detection; more information was presented in Appendix B (Table b2). The minimum 

PA remained below 70% until the sample size of 5000. Thomlinson et al.(1999) proposed the minimum OA 

and per-class accuracy of 85% and 70% for high precision classification, respectively. Although the bootstrap 

sample size of 6000 and 7000 has increased OA and Kappa by approximately 1%, the sample size of 5000 was 

used for this research to avoid overfitting and high computational process based on previous studies (Zheng et 

al. 2017, Thomlinson et al. 1999). 5000 bootstrap sample size is also equal to two-thirds of the validation dataset 

in this paper. Furthermore, the lowest and highest OOB error were obtained for the samples of 5000 and 137, 

respectively. 

This paper has achieved high value for the accuracy metrics based on a single image of medium resolution S2A 

multispectral bands compared with previous studies that used multi-temporal or high-resolution imagery ( Costa 

et al. 2022, Immitzer et al. 2016). The main purpose of this study was to increase the interclass separability of 

forest and vegetation classes and to provide up-to-date data based on S2A for the Lousa region, Portugal. 

However, the major limitation is the lack of recent reference data or fieldwork in Portugal. To better analyze 

the accuracy of the classified map, field measurement data and reliable and up-to-date ground truth data as 

reference data are needed. For future study, adding Light Detection and Ranging equipment (LiDAR) data, 

UAV imagery with finer resolution, Sentinel-1 SAR data, and knowledge of local experts are expected to 

increase the discrimination of the LCLU classes and provide more information on vertical features of the 

species. Recently, Portugal has started capturing LiDAR data for the whole country. Nevertheless, it is not yet 

covered in the study area of this paper.  
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Figure 7- Effect of sample size on OA, UA, PA, Kappa, and OOB Error in RF classification. 

 

4. Conclusion and Future Works 

This paper proposed a methodology for vegetation mapping by applying a Random Forest classifier on the 

Sentinel2-A image. Twenty-six independent variables were used by combining ten S2A multispectral bands 

resampled to 10 m pixel size with four vegetation indices and 12 GLCM texture feature variables. These GLCM 

texture features were calculated from the three first principal components of downscaled S2A spectral bands 

using PCA. Training and validation data was acquired through forestry data of ICNF and DGT and visual 

interpretation using Google Earth. RF classifier with 500 ntree and 5 mtry was used to classify the study area 

into ten classes, including the predominant tree species. A high precision classification was performed with an 

overall accuracy of 90.5% and a Kappa coefficient of 89%. Nevertheless, employing all 26 variables did not 

achieve the highest accuracy compared to the combination spectral bands and GLCM textures with an OA of 

92%. The comparison of classification accuracy for four different combinations of input variables shows the 

importance of GLCM textures especially ME and CO in improving the performance of the RF classifier. 

Spectral bands 11 and 2 also have high scores in MDA and GINI for all the scenarios. Generally, S2A 10m 

spectral bands have a strong potential for precise and rapid vegetation classification. GNDVI contributes the 

most to the accuracy of classification amongst vegetation indices. The results of this study indicate that 

incorporating at least one GLCM texture feature and at least one vegetation index into the S2A spectral bands 

can effectively improve the accuracy of assessment and tree species classification.  

Few studies explored vegetation mapping with high accuracy in Portugal, mainly in the Lousa region, using 

Sentinel 2 images. Exploring the multispectral band and texture feature analysis can contribute to the spectral 

separability of vegetation, facilitating studies of aboveground biomass estimation and wildfire simulation. 

Accuracy assessment of the implemented methodology has shown a high potential for generating high-accuracy 

vegetation mapping over forestry areas. It is foreseen to expand the methodology for the data fusion of Sentinel 

2 and Sentinel 1 to include data regarding the vertical structure of the vegetation and canopy. This data will 

enable the creation of a fuel type tridimensional semantic map to be used by fire behavior models and allow the 

definition of biomass management strategies towards wildfire risk reduction or accurate fire spread simulations 

for the decision support during wildfire occurrences. These results are relevant for the ESA 2025 Agenda, whose 

challenge is integrating information from Copernicus mapping carbon to promote sustainable land management 

and improved resilience against natural risks and impacts of climate change. Therefore, more studies are 

necessary to be conducted in order to cover more datasets in Portugal.  
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Appendix A 

Table A1- Percent and accumulative eigenvalues of three first PCs. 

PC Layer Percent of Eigenvalues (%) Accumulative of Eigenvalues (%) 

PC1 92.5 92.5 

PC2 6.3 98.8 

PC3 0.6 99.4 

 

Figure A1- OOB Error of the number of RF trees, ntree. 
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Figure A2- OOB Error of the number of RF mtry.  

 

Appendix B 

Table B1- Classification result represented in the area (ha) and percentage. 

Class 

ID 

 

Classified Class Classified 

area (ha) 

Percentage 

(%) 

The difference with 

reference data area 

(ha) 

The difference 

with reference 

data area (%) 

1 Pinus pinaster 3619.1867 26.2 -1570.9833 -11.3 

2 Eucalyptus 2951.4365 21.3 +339.4865 +2.4 

3 Quercus 1453.5870 10.5 -180.227 -1.3 

4 Castanea 506.3817 3.7 -4.5483 -0.0 

5 Acacia 626.2897 4.5 +120.0297 +0.9 

6 Pinus Pinea 17.1625 0.1 +5.9825 +0.0 

7 Cropland/Agriculture land 2518.3886 18.2 +1119.0689 +8.1 

8 Shrubland/Grassland 1499.6008 10.7 +798.0708 +5.6 

9 Water 21.9260 0.2 -42.914 -0.2 

10 Barren 625.9895 4.5 -655.2805 -4.7 
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(a) (b) 

  
(c) (d) 
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(e) (f) 

Figure B1- Mean decrease accuracy and mean decrease Gini for three different combinations of variables: (I) 

Spectral bands (a)-(b), (II) Spectral bands + VIs (c)-(d), and (III) Spectral bands+ GLCM texture (e)-(f). 

 

Table B2- Effect of sample size on OA, UA, PA, and Kappa in RF classification. 

Sample 

Size 

137 1000 2000 3000 4000 5000 6000 7000 

OA (%) 76.5 85.2 88.2 87.8 89.9 90.9 91.6 92.2 

Kappa (%) 71.2 82 85.7 85.1 87.7 89 89.9 90.5 
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