
Edited by

DOMINGOS XAVIER VIEGAS
LUÍS MÁRIO RIBEIRO

2022

Advances in Forest Fire Research 2022 - D. X. Viegas & L.M. Ribeiro (Ed.)

Chapter 2 - Fire at the Wildland Urban Interface

https://doi.org/10.14195/978-989-26-2298-9_76 Advances in Forest Fire Research 2022 – Page 494

A Study of FDS Computational Performance in Heterogeneous Hardware

Architectures -Applied for grassland fires

Donghyun Kim1,2; Jae-Ryul Shin*3; Hwang-Hui Jeong3

1Jeonju University, Jeonju-si Jeonbuk-do, Rep. of Korea, {72donghyunkim@jj.ac.kr}
2 IIASA(International Institute for Applied Systems Analysis). Laxenburg, Austria, {dhkim@iiasa.ac.at}

3NEXTfoam, Geumcheon, Seoul, Rep. of Korea, {jrshin, hhjeong}@nextfoam.co.kr

*Corresponding author

Keywords

FDS, Computational Fluid Dynamic, Message Passing Interface, Open Accelerator, Kokkos

Abstract

Fire Dynamic Simulator (FDS), a fire simulation program, applies Message Passing Interface (MPI) and Open Multi

Processing (OpenMP) libraries for large-scale simulation. FDS can be executed by dividing simulation problems in a

computing cluster using MPI. The main point is to divide the entire domain to be interpreted into several sub-domains

and allow each sub-domain to be calculated by an individual computer with an individual processor. When performing

parallel computation, FDS first decomposes each sub-domain, then supports two-step parallelization in which multi-

threading is applied within each sub-domain, and uses the OpenMP library to implement multi-threading. In this study,

OpenACC, a parallelization technique capable of using heterogeneous hardware architectures, was partially applied to

FDS. As an application problem, the calculation performance is evaluated through CSIRO Grassland Fires, a verification

case of FDS. The hardware for evaluation was a personal computer consisting of dual Xeon 2678-V3 and GeForce GTX

1070. The FDS source code applies OpenACC using PGI Fortran as a compiler in Linux environments. In calculation

performance, calculations using CPU and GPU together show 1.89 times faster performance than calculations using a

single CPU. In case of using 1 GPU and 16 CPUs (MPP + OpenACC), the analysis result is 21 times faster. In this

regard, analysis of grassland fire of WFDS was performed.

1. Introduction

Central Process Unit (CPU), the brain that performs calculations, has been increasing exponentially in unit

performance in accordance with Moore's law over the past half century, but the improvement trend has been

saturated by the 21st century. Since then, performance has been increased by increasing the number of cores,

and now it is trying to overcome the scaling limitations of systems composed only of CPU by accelerators.

Therefore, heterogeneous hardware architectures are widely used, and the well-known AlphaGo has 280

Graphic Process Units (GPU) of Tesla accelerators for deep learning. The adaptive parallel technique in

heterogeneous hardware architecture proposed in this study is a new technique using the Kokkos library, in

which the practical version was released by 2014, and is a very experimental and innovative technology.

Therefore, few literatures have been published so far, and its application has recently been introduced by

conferences in the field of high-performance supercomputing and international combustion conferences. There

is currently the only alternative called Open Computing Language (OpenCL) in a way that does not use Kokkos

while pursuing the same goal of adapting to heterogeneous hardware architectures, but this is a new

programming language. Compilers that support this must develop together, but there have been no cases applied

to the engineering or computational fluid fields yet. On the other hand, because Kokkos uses templates, which

are existing features of general-purpose C++ languages, it has the advantage of being able to use dedicated high-

performance compilers that are optimized according to architectures such as GNU, PGI, Intel, Cray, and CUDA.

Fire Dynamics Simulator (FDS) is a dedicated fire simulation program written in the Fortran programming

language by introducing computational fluid dynamics techniques to analyze the fluid flow phenomenon driven

by fire. FDS numerically solves the Navier-Stokes equation for low-velocity heat-driven flows focusing on

smoke and heat transfer from fire.Therefore, FDS provides a model that can analyze basic fire dynamics and

combustion. FDS has been developed by the National Institute of Standards and Technology in the United States

with the goal of interpreting real fire problems. However, the computational cost increases to analyze very

https://doi.org/10.14195/978-989-26-2298-9_76

Advances in Forest Fire Research 2022 - D. X. Viegas & L.M. Ribeiro (Ed.)

Chapter 2 - Fire at the Wildland Urban Interface

https://doi.org/10.14195/978-989-26-2298-9_76 Advances in Forest Fire Research 2022 – Page 495

detailed physical phenomena. To overcome this, FDS is written so that the central processing unit (hereinafter

referred to as CPU) is executed on various hardware platforms and operating systems sequentially or in parallel.

FDS uses a Message Passing Interface (MPI) to divide and execute analysis problems in a computing cluster.

This is a method in which the entire area to be analyzed is divided into multiple meshes and each mesh is

computed by a separate processor on a separate computer. FDS supports two-step parallelization by first

decomposing each computational domain into a mesh of distributed memory and then applying multi-threading

within each mesh in performing parallel analysis, and uses the OpenMP (Open Multi Processing) library to

implement multi-threading.In this study, Open ACCelerator (OpenACC), a parallelization technique that can

use heterogeneous hardware architectures, was partially applied to FDS to speed up FDS operation. The speed

verification application case was conducted on Grassland fire tested in Australia in 2010. The computational

performance is evaluated through the verification case of FDS, CSIRO Grassland Fires. The hardware for

evaluation was configured in parallel with a personal computer consisting of dual Xeon 2678-V3 and GeForce

GTX 1070. FDS source code applies OpenACC using PGI Fortran as a compiler in Linux environment.

2. Parallel Computing Method

MPI and OpenMP are standard methods for performing parallel computation in distributed memory system and

shared memory system environment. Parallel computation has been supported since FDS version 5.4, and two

parallel processing methods are provided, OpenMP and MPI. These two methods can be simultaneously applied

to FDS according to the hardware configuration. In section 3.1.2 of the FDS User's Guide, it was reported that

the maximum speed improvement of OpenMP is approximately doubled, and that when MPI and OpenMP are

used together, most of the reduction in analysis time is achieved by MPI.

Figure 1- OpenACC’s Abstract Accelerator Model

2.1. MPI

MPI is a standard that describes information exchange in distributed and parallel processing. The Message

Passing method is an operation model in which data to be exchanged between processors is exchanged using a

message passing function. MPI defines the standard of the Message Passing Library, which is a collection of

these functions, and several MPI libraries have been developed accordingly. Subroutines that require

parallelization in sequence code are constructed in parallel through appropriate parallelization techniques.

2.2. OpenMP

OpenMP is an application programming interface that supports shared memory multi processing of programs

in programming languages such as C, C++, and Fortran on various computer platforms. OpenMP provides users

with a simple and flexible interface for developing a variety of parallel applications from desktops to

supercomputers, and is easily extensible. And by using OpenMP and MPI, the application program can also be

built as a Hybrid OpenMP/MPI model.

2.3. OpenACC

OpenACC is a data parallel programming model designed to provide portability between CPU/GPU hardware

architectures. Like OpenMP, OpenACC is directive-based, so there are fewer changes to the original code

https://doi.org/10.14195/978-989-26-2298-9_76

Advances in Forest Fire Research 2022 - D. X. Viegas & L.M. Ribeiro (Ed.)

Chapter 2 - Fire at the Wildland Urban Interface

https://doi.org/10.14195/978-989-26-2298-9_76 Advances in Forest Fire Research 2022 – Page 496

compared to CUDA or OpenCL. Also, compilers such as PGI and GCC support OpenACC. OpenACC is a

method in which the compiler detects directives in a program and determines how to parallelize loops.

3. Computing Performance

The computational performance is evaluated through the verification case of FDS, CSIRO Grassland Fires. As

hardware for evaluation, a personal computer composed of dual Xeon 2678-V3 and GeForce GTX 1070 was

used. FDS source code applies OpenACC using PGI Fortran as a compiler in Linux environment. In the FDS

source code, ‘!$ACC PARALLEL LOOP’ of OpenACC was partially applied to

‘PRESSURE_ITERATION_LOOP’, the part that determines convergence during calculation.

Figure 2- WFDS result of Grassland Fires in CSIRO Austrailia

Table 1- Computing Performance

MPI Analysis time [hr] OpenACC with MPI Analysis time [hr]

1 CPU 109 1 CPU + 1 GPU 57

2 CPU 59 2 CPU + 1 GPU 32

4 CPU 31 4 CPU + 1 GPU 16

8 CPU 17 8 CPU + 1 GPU 9

16 CPU 9 16 CPU + 1 GPU 5

In the case of MPI, when 16 CPUs are used compared to one CPU, the analysis time is 12 times faster from 109

hours to 9 hours. On the other hand, when one CPU and one GPU are used together by applying OpenACC, the

calculation time is 1.89 times faster than the result using one CPU. In the case of using 1 GPU and 16 CPUs

(MPP + OpenACC), the analysis time is 5 hours, which is about 21 times faster.

Table 2 shows the results of measuring the parallel performance of MPI+OpenACC according to the increase

in the size of the computation area. When parallelization was performed with MPI, the performance

improvement was evident as the number of CPUs and the size of the problem increased. On the other hand, in

the case of MPI+OpenACC, the performance of MPI+OpenACC with 2 CPUs or more is lower than that of

MPI. It can be seen that the amount of CPU allocated during MPI parallelization is also allocated to the GPU

as much as the number of CPUs, which increases the load and decreases performance. In addition, if the size of

the calculation area is about 100 million and 8 CPUs are used, the memory performance of the GPU, GTX 1070,

is exceeded, and calculation cannot be performed. However, when one or two CPUs are used, it can be seen that

the performance of MPI+OpenACC is significantly superior to that of MPI depending on the size of the

calculation area.

https://doi.org/10.14195/978-989-26-2298-9_76

Advances in Forest Fire Research 2022 - D. X. Viegas & L.M. Ribeiro (Ed.)

Chapter 2 - Fire at the Wildland Urban Interface

https://doi.org/10.14195/978-989-26-2298-9_76 Advances in Forest Fire Research 2022 – Page 497

Table 2- 2D Heat Conduction SpeedUp with Problem Size and Parallel Method

Problem

Size

1024x1024

(@1 million)

2048x2048

(@4 million)

10240x10240

(@100 million)

Parallel

Method
MPI

MPI +

OpenACC
MPI

MPI +

OpenACC
MPI

MPI +

OpenACC

1 CPU 1 1.48 1 2.93 1 4.96

2 CPU 1.96 1.41 1.99 2.82 2.63 4.69

4 CPU 3.70 0.85 4.15 1.70 4.06 2.88

8 CPU 7.21 0.59 6.46 1.08 8.02 Out of

GPU

memory 16 CPU 15.12 0.31 16.84 0.74 16.71

4. Conclusion

In this study, OpenACC, a parallelization technique that can use heterogeneous hardware architectures, was

partially applied to FDS. As an application problem, computational performance was evaluated through CSIRO

Grassland Fires, a verification case of FDS. As hardware for evaluation, a personal computer composed of dual

Xeon 2678-V3 and GeForce GTX 1070 was used. In computational performance, the computation using the

CPU and GPU is 1.89 times faster than the computation using one CPU. In the case of using 1 GPU and 16

CPUs (MPP + OpenACC), the analysis time is 5 hours, which is about 21 times faster. In the future, it is expected

that the hardware parallelization technology can be used to shorten the calculation time for forest fire spread

fire analysis using a personal computer.

https://doi.org/10.14195/978-989-26-2298-9_76

	A Study of FDS Computational Performance in Heterogeneous Hardware Architectures -Applied for grassland fires

