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Abstract 

Wildfire propagation is a non-linear and multiscale system in which there are involved multiple physical and chemical 

processes. One critical mechanism for the spreading of wildfires is the so-called fire-spotting: a random phenomenon 

which occurs when embers are transported over large distances by the wind, and causing the start of new spotting ignitions 

which jeopardize the fire-fighting actions. Due to its nature, fire-spotting is usually modeled as a probabilistic process. 

Three principal processes are involved during the fire-spotting: firebrands generation, transport joined with landing, and 

spot ignition. In this work, the physical parametrization of fire-spotting RandomFront (Trucchia et al. 2019) has been 

implemented into the operational wildfire spread simulator PROPAGATOR (Trucchia et al. 2020), which is based on a 

cellular automata approach. In the routine RandomFront, the downwind landing distribution of firebrands is modeled by 

means of a lognormal distribution, which is parameterized by taking into account the physics involved in the 

phenomenon. The considered physical parameters are: wind field, fire-line intensity, fuel density, firebrand radius, 

maximum loftable height, as well as factors related to atmospheric stability and flame geometry (Trucchia et al. 2019; 

Egorova et al. 2020,2022). As a matter of fact, similarity analysis cannot be applied to wildifres (Egorova et al. 2022, 

Section 2) thus the outputs of the simulations are checked against a real test case. In particular, we have considered the 

evolution of a real wildfire occured in Italy in August 2021 during which the fire-spotting played a critical role. In 

addition, we have implemented into PROPAGATOR also other two schemes for fire-spotting already available in 

literature and suitable for cellular automata-based wildfire simulators (Alexandridis et al. 2011; Perryman et al. 2013). 

We compared the performance of these three fire-spotting models. The results show that, on the one hand, the 

RandomFront parametrization reproduces the main spotting effects similarly to the available literature models 

(Alexandridis et al. 2011; Perryman et al. 2013), and, on the other hand, RandomFront generates also a variety of fire-

spotting situations together with long-range fluctuations of the burning probability by allowing for complex patterns. 

 

 

1. Brief introduction 

Fire-spotting occurs when firebrands are transported away from fire and start new fires known as spot-fires 

(Brown and Davis 1973; Werth et al. 2011). These new fires can occur near the fire propagation front, 

accelerating the spread of fire, or kilometers away from the source fire, causing new secondary ignitions that 

increase the extinction difficulty and in which civilians and firefighters can result trapped (Koo et al. 2010). The 

conducted research to understand this phenomenon has been done in two ways. On one hand, there are extensive 

experimental studies focused on the characterization of the firebrands generation and transport process 

(Manzello et al. 2007, 2008; Suzuki et al. 2012; Thomas et al. 2017; Himoto and Iwami 2021; Wickramasinghe 

et al. 2022). Unfortunately, the short scales of the experiments limit its application into the calculation of the 

landing distribution (Pérez et al. 2011; Sullivan and Cruz 2015). On the other hand, firebrand transport models 
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have been developed to estimate the landing distribution and flight paths of the firebrands (Tarifa et al. 1965, 

1967; Albini 1979, 1983; Himoto and Tanaka 2005; Sardoy et al. 2007, 2008; Wang 2011; Kaur et al. 2016). 

We highlight that the validation of these models in reduce-scale experiments are unreliable, in particular, in 

cases with important wind-fire or multiple fire interactions (Egorova et al. 2022, Section 2).  

Wildfire modeling has been studied from several approaches (Sullivan 2009a; b; c), but Cellular Automata (CA) 

based methods have demonstrated to be a quick, efficient, and versatile approach to simulate the wildfire 

spreading (Clarke et al. 1994, Duarte 1997, Hargrove et al. 2000, Encinas et al. 2007, Gharakhanlou and 

Hooshangi 2021). Some of the developed CA-based models include the effect of the fire-spotting. We highlight 

the model developed by Alexandridis et al. (2008, 2011), which was revisited by Freire and Dacamara (2019) 

to reproduce a forest fire in Portugal, and the model developed by Perryman et al. (2013). 

In this work, we have implemented into the operational wildfire spread simulator PROPAGATOR (Trucchia et 

al. 2020) the recently developed parametrization RandomFront (Trucchia et al. 2019; Egorova et al. 2020, 2022) 

as well as both previously cited CA-based fire-spotting models to be compared. In addition, we have reproduced 

a wildfire that occurred in Italy in August 2021, in which the fire-spotting effects were critical, for validating 

the results. 

 

2. Fire propagation model and firebrand landing parametrizations description 

2.1. Propagator fire-spread simulator 

In this work, PROPAGATOR (Trucchia et al. 2020) was used to simulate the spread of fire. PROPAGATOR 

is an operational software based on a CA approach and assisted with high resolution data from the topography 

and land fuel cover. The fire spread is computed through vegetation type, slope, wind direction and speed, and 

fuel moisture content, therefore, the burned surface evolves in a stochastic sense. The input parameters are the 

wind intensity and direction, the start point of fire and the adopted ROS model. PROPAGATOR is designed to 

compute an ensemble of simulations in a fast way, being its basic and natural output a georeferenced map which 

represents the probability of each cell to be affected by fire. 

2.2. Alexandridis et al. (2011) firebrand landing parametrization 

The model developed by Alexandridis et al. (2008, 2011) , consist of a CA approach focused on the efficient 

simulation of wildfire spreading. The first part of their fire-spotting parametrization models the firebrand 

landing distance as follows: 

   dp = rn⋅ Pw = rn ex p (UC2
(Cos φ - 1)) , (1) 

where 𝑟𝑛 is a random number drawn from a normal distribution, φ is the angle between the direction of the wind 

and the direction of the blasting, and UC2
= U ⋅ C2 is the mean-wind velocity times a fitted constant. In addition, 

the probability of spot ignition, i.e., when a blasting firebrand will ignite or not a new spot-fire, is computed as: 

  PC = PC0 (1 + Pcd) ,    (2) 

where Pc0 is a constant probability corrected by Pcd , which is a factor that depends on type and fuel density. 

2.3. Perryman et al. (2013) firebrand landing parametrization 

The model developed by Perryman et al. (2013) consists of an ensemble of four sub-models adapted to a CA 

environment. Their firebrand landing distribution was implemented following the statistical model developed 

by Sardoy et al. (2008) for the firebrands which are blasted parallel to the wind, and the Himoto and Tanaka 

(2005) results for firebrands blasted perpendicular to the wind field. The landing distance of the parallel 

firebrands are computed following a lognormal distribution function: 

  p(d) =
1

(√2π σFB d)
 ex p( 

-(l n(d) - μ
FB
)

2
)

(2σFB
2 )

 ) ,           (3)     
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where d is the distance away from the line front. The mean µFB and standard deviation σFB depend on the current 

wind intensity U, the fireline intensity If, fitted constants and if the firebrands are buoyancy driven or wind 

driven. To discern between both cases, the Froude number Fr is computed: 

 
Fr = 

U

√g(
If

(ρ cp TA g1/2)
 )

 2 /3
,  

 

  (4) 

where g is the acceleration of gravity, If is the fire intensity, ρ is the ambient gas density, cp is the specific heat 

of gas and TA is the ambient temperature. If Froude number is less or equal to one, buoyancy driven regime is 

considered and for Froude number greater than one, wind driven plume regime. The firebrand distance of the 

embers generated parallel to the wind are modeled by means of a normal distribution, assuming zero mean and 

standard deviation σν = L/2, where L is the cell size. 

2.4. RandomFront firebrand landing parametrization 

The landing distance is parameterized by means of a log-normal distribution (i.e., Eq. (3)) combined with the 

physics involved in the firebrand transport (Trucchia et al. 2019). The mean of the distribution µ* depends 

strongly on the atmospheric conditions, specifically on the Atmospheric boundary layer (Egorova et al. 2020): 

 
        μ* = H( 

 3ρCd

2 ρ
f

 )

 1/2

, 
 

             (5) 

 

where Cd is de Drag coefficient and ρf is the density of the wildland fuels. The maximum liftable height of the 

firebrands H is computed as a fraction of the injection height H = 0.4 · Hsmoke. The injection height of the smoke 

Hsmoke is described by the formula (Sofiev et al. 2012, formula (10)):  

 
Hsmoke  = α HABL + β(

If

d Pf0

)

ζ

ex p(-
δFT NFT

 2

N0
 2

), 
 

     (6) 

 

where HABL is the height of the atmospheric boundary layer, N2
0 and N2

FT are the Brunt-Väisälä frequency at the 

current height and in the free troposphere respectively, and Pf0 is the ratio of reference fire power. The standard 

deviation σ involves the effects of the horizontal wind, flame geometry and the slope over the fire-spotting 

landing distance Egorova et al. (2020, 2022): 

     σ = σ(φ,ω) =
1

zp

ln

{
 

 
U Cos φ

√gr(1+ Tan2 ω)

+β
2
√

2ρ
f

3ρCd

1.4U Cos φ +√gh0 (1+ϕ
wind 

+ϕ
slope 

)
2/3

Tan ω

√gh0 (1+ϕ
wind 

+ϕ
slope 

)
2/3

-1.4U Cos φ Tan ω}
 

 

, (7)   

where φ is the angle between the wind and the direction in which a firebrand is ejected, ω is the slope of the cell 

in which the ember is generated and: 

 
Lf = h0 (1+ϕ

wind 
+ϕ

slope 
)

2/3

= β
0
 If
 2 /3, 

            

(8) 

where: 

 

β
0
=(

1

2g(ρcpTA)
2
)

1/3

. 

 

(9) 

 

Fire-spotting in the RandomFront parametrization is considered as a downwind phenomenon. A critical angle 

φ0 is defined as the angle for which the ember is not considered (σ <= 0). By means of the probabilistic 

distribution, this is the angle for which σ becomes negative. 
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3. Area of study and simulations 

3.1. Area of study 

The reproduced wildfire took place 1st August 2021 in the municipality of Campomarino, in the Adriatic coast 

of Italy (Fig. 1).  

 

Figure 1- Study area.  

The burnt perimeter is exposed in Fig. 2 – (a). The wildfire started burning around 12:00 am and finished around 

5:00 pm. The fire-spotting effects were reported around 3:00 pm from the East to the West part of the port. We 

defined a rectangular area of study with 2.98 km2 around the wildfire extension to run the simulations. Each cell 

of the cellular automaton has a resolution of 20 m2. The fuel types have been adapted from the Corine Land 

Cover (CLC) classification (Feranec et al. 2016) t o the propagator classes (Fig. 2 – (b)). Specifically, we took 

Pinus pinaster Aiton as the reference tree specimen associated with the fire-prone conifers fuel type (Tihay et 

al. 2009). The data labeled as “non-burnable” have a low but non-zero probability of being burnt. The orography 

data were obtained from a Digital Elevation Model (DEM) but due to the proximity to the sea, a null or very 

tiny variation of the slope is reported over the fire-prone conifers. 

3.2. Methodology and simulations 

For each parametrization an ensemble of 100 independent realizations was generated under the same conditions 

(Trucchia et al. 2020). The computational time for each ensemble is less than two minutes. Each simulation was 

stopped after 5 hours of simulated time. The weather was reported to be unstable and turbulent when the wildfire 

occurred, with peaks up to 70 km/h. To reproduce these conditions, we consider a constant wind speed of 40 

km/h and, each 15 minutes of simulated time, a stochastic constant derived from a normal distribution with 

mean 0 and standard deviation 20 is added to the mean wind speed. In addition, the main wind direction, which 

came mainly from south, is also perturbed each 15 min with a stochastic variable derived from a normal 

distribution with mean 0 and standard deviation π/8. Two processes still needed to be characterized for a 

complete fire-spotting description: firebrand generation and spot ignition. Despite the considerable number of 

studies focused on both previous phenomena at the laboratory scale, there is a lack of research focused on the 

development of a physics-guided probabilistic model to characterize them. Due to this reason, we have modeled 

the firebrand generation for each burning cell by means of a Poisson distribution and the spot probability through 

Eq. (2). Next, we show the probability maps computed from the ensemble of simulations after 3 and 5 hours, 

which are the times at which fire-spotting was reported and the fire stopped, respectively.  

3.2.1.  Alexandridis et. al. (2011) sub-model results 

The port separates both coniferous areas with 190 m, so the mean of the normal distribution which will generate 

rn in the Alexandridis parametrization Eq. (1) was implemented as 190. We also consider to implement the 
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standard deviation equal to 25 as reasonable value. The computed burn probability map for this firebrand landing 

distribution after 3 and 5 hours is exposed in Figure 3 respectively. 

 

Figure 2- Studied area. Figure 2-(a) shows the true color orthomosaic derived by UAV survey done after the wildfire 

occurs. The red line defined the burnt area, based on high resolution photointerpretation. Figure 2-(b) displays the 

land cover classification used. 

 

 

Figure 3- Computed burn probability map with the Alexandridis parametrization implemented. Figure 3-(a) shows the 

burn probability after 3 hours and Figure 3-(b) after 5 hours. 

 

3.2.2.  Perryman et. al. (2013) sub-model results 

The burn probability map after 3 and 5 hours with the Perryman firebrand landing distribution is shown in 

Figure 4. 

 

Figure 4- Computed burn probability map with the Perryman parametrization implemented. Figure 4-(a) shows the 

burn probability after 3 hours and Figure 4-(b) after 5 hours. 
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3.2.3.  RandomFront sub-model results 

The burn probability map after 3 and 5 hours with the RandomFront firebrand landing distribution is shown in 

Figure 5. Due to the instability of the weather and the summer conditions we consider the height of the 

Atmospheric Boundary Layer equal to Habl = 2600 m. 

 

Figure 5- Computed burn probability map with the RandomFront parametrization implemented. Figure 5-(a) shows 

the burn probability after 3 hours and Figure 5-(b) after 5 hours 

4. Brief discussion 

To validate the model against the shape of the reference wildfire and quantify the obtained results, the averaged 

probability was computed for the two reference areas at both sides of the port, see Table 1. This measure is 

defined as the sum of the probabilities associated to each cell in the reference domains divided by the number 

of cells inside the reference domains. 

Table 1- Averaged probabilities computed inside the reference perimeters. 

Area Alexandridis et al. (2011) Perryman et al. (2013) RandomFront  

East 0.7937 0.7370 0.7303 

West 0.0358 0.1330 0.2868 

Table 1 shows that the averaged probability in the reference area at the West part of the port is, in the ensemble 

generated with RandomFront parametrization, one order of magnitude higher than the one obtained by using 

Alexandridis et al., and more than twice when compared with the Perryman et al. parametrization. This agrees 

with Figures 3, 4 and 5 displayed results. Figure 3 shows how Alexandridis et al. parametrization is unable to 

assign any burning probability to the West part of the port when the fire-spotting was indeed reported. In 

addition, at the end of the simulation, a poor spread pattern is observed. The Perryman et al. parametrization of 

the firebrand’s landing distribution displayed in Figure 4 generates a bit more complex spread pattern than by 

using Alexandridis et al., but a low burn probability remains assigning to the West part of the port. By contrast, 

RandomFront firebrand’s landing parametrization can generate a clear but low burn probability when the fire-

spotting was reported. In addition, at the end of the simulation, an averaged burnt probability of 28.6% is 

assigned to the reference area at the West part of the port, as well as quite complex spread pattern is observed.  

The implementation of fire-spotting routines causes deviation between simulations output when performed with 

different fire-spotting models (but fixed input data), see Figures 3, 4 and 5. In particular, from both the spread 

pattern and the probability to burn, we have that that the fire-spotting parametrization RandomFront performs 

better than the other two models.  

 

5. Main conclusions 

In this work, we have implemented the recently developed RandomFront fire-spotting landing distribution into 

the operational software PROPAGATOR. In addition, we have compared against other two fire-spotting models 

developed for a cellular automaton setting. To compare the performance of these three parametrizations, a real 

wildfire affected by fire-spotting effects was reproduced and used as validation test: actually, because results at 

laboratory scale are unreliable due to the multi-scale nature of wildfires. The ensemble computed with the 
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RandomFront parametrization displays a more complex spread pattern than the other parametrizations and a 

non-zero burnt probability in the West area of the port where the fire-spotting was indeed reported. In addition, 

at the end of the simulation in the area affected by the fire-spotting, RandomFront provides higher burnt 

probabilities than the other implemented parametrizations. Firebrand rate generation and spot ignition 

probability, which are still poorly for probabilistic modelling approaches, embody future development of the 

present research. 
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