Pedro DiasJosé Torres FarinhaInácio FonsecaJorge Cunha
In a competitive world all equipment must maximize its availability. The predictive maintenance objective is to follow the evolution of its use and the tear that results from the dynamics of components. Nowadays, with the evolution of technology it is possible to check and detect almost every problem. In critical organizations, like paper industry, chemical industry, oil industry, and so on, it is necessary to follow the “health” of the most part of equipment in general, and the vital ones in particular, because even small errors can cause a lot of monetary damages. This type of companies need to check every detail of their assets. The majority of the companies use a lot of technology to evaluate the condition of each critical component. They want to know the value of on-condition variables like vibration monitoring offline, vibration monitoring online, thermograph, oil analysis, and so on. However, having lot of offers of equipment for diagnosis and a lot of offers of maintenance services by specialized companies, the factories didn’t increase the predictive maintenance level because they aren´t sensitive enough to do that. The pressure that the international economic market has in companies causes factories to work every minute they can before equipment and components break. Companies try to delay the time of each maintenance intervention, but this delay, when it is done without on-condition accompaniment increases the total maintenance costs, which increases the total value of equipment maintenance, both direct and indirect. In this case, the predictive maintenance can have an important role to increase the production time. These are the main topics that will be handled in the paper industry, with focus on vibration monitoring applied in a paper factory, including maintenance analysis versus cost analysis.
—
ISBN:
eISBN: 978-972-8954-42-0
DOI: 10.14195/978-972-8954-42-0_6
Área: Ciências da Engenharia e Tecnologias
Páginas: 35-39
Data: 2014
Keywords
—
Outros Capítulos (32)
Maintenance conceptual models and their relevance in the development of maintenance auditing tools for school buildings’ assets: an overview
Ana C. V. Vieira;A. J. Marques Cardoso
https://doi.org/10.14195/978-972-8954-42-0_1
Real time data colection and processing for aircraft maintenance enhancement (REACT)
Joel Ferreira;Luís Oliveira;Rúben Oliveira
https://doi.org/10.14195/978-972-8954-42-0_2
Selection of instances in Condition Based Monitoring: the case of aircraft engines
Leonor Fernandes;Roberto Henriques;Victor Lobo
https://doi.org/10.14195/978-972-8954-42-0_3
FMECA analysis for the assessing of maintenance activity for power transformers
Mohamed Mahmoud Abdel Fattah Khalil;Loredana Cristaldi;Marco Faifer
https://doi.org/10.14195/978-972-8954-42-0_4
Exploring the condition-based maintenance opportunities for production-critical assets
Nii Nortey Basil Lokko;Jawad Raza;Sukhvir Singh Panesar
https://doi.org/10.14195/978-972-8954-42-0_5
Predictive maintenance!: to do or let die
Pedro Dias;José Torres Farinha;Inácio Fonseca;Jorge Cunha
https://doi.org/10.14195/978-972-8954-42-0_6
Time replacement optimization models for urban transportation buses with indexation to fleet reserve
Hugo Raposo;José Torres Farinha;Rúben Oliveira;Luís Andrade Ferreira;Jorge André
https://doi.org/10.14195/978-972-8954-42-0_7
Life cycle cost optimization through an asset management based on risk principles
João Santos;Hugo Barata;Hélio Cordeiro;Cristina Mendonça;José Sobral
https://doi.org/10.14195/978-972-8954-42-0_8
Better maintenance decision making in business networks with a LCC model
Tiina Sinkkonen;Antti Ylä-Kujala;Salla Marttonen;Timo Kärri
https://doi.org/10.14195/978-972-8954-42-0_9
A control system approach to optimal maintenance planning for building retrofitting project
Bo Wang;Xia Xiaohua
https://doi.org/10.14195/978-972-8954-42-0_10
Advanced 3D scan data analysis for performant reengineering maintenance processes
Hendrik Grosser;Rainer Stark
https://doi.org/10.14195/978-972-8954-42-0_11
Augmented reality and the future of maintenance
Rúben Oliveira;Torres Farinha;Hugo Raposo;Noberto Pires
https://doi.org/10.14195/978-972-8954-42-0_12
Maintenance support wireless system for ram of forming presses
Diego Salazar;Gerardo Glorioso;Markus Wabner;Martin Riedel
https://doi.org/10.14195/978-972-8954-42-0_13
Maintenance management in Web ASP.NET MVC applications
Francisco Rodrigues;Inácio Fonseca;Rúben Oliveira;José Torres Farinha
https://doi.org/10.14195/978-972-8954-42-0_14
Mobile Applications and its Potential to Maintenance
Hugo Santos;António Simões;Inácio Fonseca;Torres Farinha
https://doi.org/10.14195/978-972-8954-42-0_15
Maintenance strategies to reduce downtime due to machine positional errors
Abubaker Shagluf;A. P. Longstaff;S. Fletcher
https://doi.org/10.14195/978-972-8954-42-0_16
Replacement time of mining drilling rigs
Hussan Hamodi;Jan Lundberg
https://doi.org/10.14195/978-972-8954-42-0_17
Maintenance continuous performance assessment of a hospital operating room AVAC system
Rui Assis
https://doi.org/10.14195/978-972-8954-42-0_18
Lean Maintenance
Bruno Inácio
https://doi.org/10.14195/978-972-8954-42-0_19
CMMS – An integrated view from maintenance management to on-line condition monitoring
José Torres Farinha;Inácio Fonseca;Rúben Oliveira;Hugo Raposo
https://doi.org/10.14195/978-972-8954-42-0_20
Practical challenges in determining periodic maintenance intervals on the Norwegian Continental Shelf (NCS): Some expert views and opinions
Nii Nortey Basil Lokko;Jawad Raza;Tore Markeset;Sukhvir Singh Panesar
https://doi.org/10.14195/978-972-8954-42-0_21
Hoshin kanri: a strategic approach to maintenance performance management
Peter Chemweno;Liliane Pintelon;Peter Muchiri
https://doi.org/10.14195/978-972-8954-42-0_22
Aggregation of electric current consumption features for extraction of maintenance KPIs
Carl-Anders Iohansson;Victor Simon;Galar Diego
https://doi.org/10.14195/978-972-8954-42-0_23
(Legal) maintenance plan for building’s energy performance
Marimba da Costa;José Torres Farinha;Inácio Fonseca;António Simões
https://doi.org/10.14195/978-972-8954-42-0_24
(Legal) maintenance plan for building’s energy performance
Marimba Costa;José Torres Farinha;Inácio Fonseca;António Simões
https://doi.org/10.14195/978-972-8954-42-0_24
Bottom to top approach for railway KPI generation
Roberto Villarejo;Carl-Anders Johansson;Urko Leturiondo;Victor Simon;Diego Galar
https://doi.org/10.14195/978-972-8954-42-0_25
Creating an open-books -supported implementation framework for inter-organizational decision-making models in the industrial maintenance context
Antti Ylä-Kujala;Salla Marttonen;Tiina Sinkkonen;Timo Kärri
https://doi.org/10.14195/978-972-8954-42-0_26
Improving risk matrices using the MACBETH approach for multicriteria value measurement
Carlos A. Bana e Costa;Diana F. Lopes;Mónica D. Oliveira
https://doi.org/10.14195/978-972-8954-42-0_27
Risk-based maintenance: relationship between the risk and the environment of operation
J. F. D. Santos;J. M. F. Calado;A. A. Roque
https://doi.org/10.14195/978-972-8954-42-0_28
Risk management based on the assessment of safety barriers
José Sobral;Carlos Guedes Soares
https://doi.org/10.14195/978-972-8954-42-0_29
Incorporating carbon penalties into supplier selection in the supply chain
Kanika Gandhi;Diego Galar;P. C. Jha
https://doi.org/10.14195/978-972-8954-42-0_30
Reliability Analysis on Crucial Subsystems of a Wind Turbine through FTA Approach
S. Katsavounis;N. Patsianis;E.I. Konstantinidis;P.N. Botsaris
https://doi.org/10.14195/978-972-8954-42-0_31